

Study of MAPS prototypes for the ALICE ITS3 upgrade

Riccardo Ricci

INFN Bologna

ALICE-ePIC meeting 29/01/2025

The ALICE ITS3 - a bent vertex detector

- Ready for LHC RUN 4 mounted during LS3
- Built using wafer-scale MAPS (Monolithic Active Pixel Sensors), produced using stitching
- Thinner (≤ 50 µm)
- Mechanically held in place by carbon foam ribs
- Bent to the target radius
 - 1st layer at 19 mm, closer to the Interaction Point
 - new beam-pipe at 16.5 mm
- Less material budget, less power consumption
- Better tracking efficiency and impact parameter resolution
- ITS3 will replace the 3 innermost layers with only **6** sensors 26 cm long

The ALICE ITS3 - a bent vertex detector

- Ready for LHC RUN 4 mounted during LS3
- Built using wafer-scale MAPS (Monolithic Active Pixel Sensors), produced using stitching
- Thinner (≤ 50 µm)
- Mechanically held in place by carbon foam ribs
- Bent to the target radius
 - 1st layer at 19 mm, closer to the Interaction Point
 - new beam-pipe at 16.5 mm
- Less material budget, less power consumption
- Better tracking efficiency and impact parameter resolution
- ITS3 will replace the 3 innermost layers with only **6** sensors 26 cm long

) ITS3 prototypes and technology validation - MLR1

- MAPS technology provide sensor and electronics integration in one single chip reducing cost, power, material budget
- ITS2 features 180 nm MAPS technology (ALPIDE sensor), with <u>ALPIDE</u>
- Multi Layer Reticle 1 First submission with the TPSCo 65 nm MAPS technology for the ITS3

APTS - Analog Pixel Test Structure

- matrix: 6x6 pixels
- **readout**: direct **analogue** of central 4x4 pixels
- **pitch**: 10, 15, 20, 25 μm
- produced in three designs: standard, modified, modified-with-gap
- Validation in laboratory with ⁵⁵<u>Fe source</u> and at beam-tests (CERN SPS)

ALICE

⁵⁵Fe source measurements @INFN-BO APTS, Modified-with-gap type

ALICE

- Spectrum obtained by considering the distribution of the signals obtained from the seed pixels⁽¹⁾
- Main peaks of the ⁵⁵Fe spectrum become distinguishable from 10⁴ events
- The comparison between the matrix signal⁽²⁾ and the matrix formed by the 4 central pixels shows that the second distribution reproduces better the ⁵⁵Fe spectrum
- This result is used for the sensor calibration (ADCu to e- conversion) via the following formula:

$$A_{\rm electrons} = \frac{A_{\rm mV, ADC} \times 1640}{{
m mean}}$$

⁽¹⁾ The **seed pixel** is the pixel with the largest amount of collected charge $^{(2)}$ The **matrix signal** represents the total charge collected within an $N \times N$ matrix centered on the seed pixel

5

⁵⁵Fe source measurements @INFN-BO APTS, Modified-with-gap design

Pitch: 15 μm *Type*: modified-with-gap design *Reverse-bias*: from 0 to -4.8 V *Source*: 37 MBq ⁵⁵Fe

- Seed pixel signal distribution of the 4 innermost pixel of APTS at different bias voltages, expressed in mV.
- The amplitude rises with increasing reverse-bias voltage → due to the expansion of the depletion region and the related decrease in capacitance.

Resume of ⁵⁵Fe measurements

• The standard type shows a reduced Charge Collection efficiency (CCE) along with an increase in the average cluster size.

Reduced CCE also at larger pitch (Vsub = -1.2 V)

- Modified types show in general a higher CCE, compared to the standard type
- The degradation in energy resolution⁽¹⁾ is more pronounced for larger pixel pitches, primarily due to increased noise, as leakage current is gathered from a greater sensor volume.
- DUT remains operational across all irradiation levels.

⁽¹⁾The energy resolution is computed as the ratio of the FWHM of the Mn-K_α peak divided by its mean.
 ⁽²⁾CCE is the ratio of the most probable value of the 3x3-pixel matrix signal distribution to the most

probable value of the signal distribution for cluster size of 1.

Beam test data taking and analysis

Telescope Power supply (DAQ and VBB) Moving stage

- Beam: 120 GeV positive hadrons @CERN SPS
- Beam test data analysis performed using *Corryvreckan*⁽¹⁾
 - software written in C++
 - offline event reconstruction and <u>analysis</u> (masking + pre-alignment, telescope alignment, DUT alignment, efficiency and spatial residuals analysis)

 \rightarrow goal: measure APTS efficiency and spatial resolution

ALICE

ITS3 beam tests - Efficiency results Modified* with gap

Detection efficiency:

Chip fully efficient (> 99%) for a wide threshold range also at different voltages

ITS3 beam tests - Efficiency results ALICE Design comparison

Detection efficiency:

 $\epsilon = \frac{\# \ tracks_{1 \ ass.cluster, \ DUT}}{total \ \# \ tracks_{DUT}}$

Modified with gap shows also at at higher thresholds the best efficiency values

Design type (Vbb = 1.2 V)	Noise (e⁻)
Standard	24
Modified	28
Mod.Gap	28

Detection Efficiency - APTS HLICE Modified with gap design - Irradiated

Detection efficiency drops significantly after THR=100 electrons, over 10⁴ of NIEL⁽¹⁾

⁽¹⁾ ITS3 requirement: 99% efficiency with radiation load of 10^3 NIEL for Layer 0 (19 mm from R = 0)

Riccardo Ricci | INFN Bologna

Spatial resolution - APTS

ALICE Modified with gap design - non irradiated

Spatial resolution computed as:

$$\sigma_{\mathrm{x(y)}} = \sqrt{\sigma_{\mathrm{DUT,x(y)}}^2 - \sigma_{\mathrm{track}}^2}$$

Spatial resolution always under 4 μm also at different voltages

Spatial resolution - APTS

ALICE Modified with gap design - irradiated

Spatial resolution computed as:

$$\sigma_{\mathbf{x}(\mathbf{y})} = \sqrt{\sigma_{\mathrm{DUT},\mathbf{x}(\mathbf{y})}^2 - \sigma_{\mathrm{track}}^2}$$

A decrease in spatial resolution performance is observed over 10¹⁵ NIEL

APTS efficiency - resume ALICE

- Modified and mod. with gap design efficiency over 99% for all Vbb and all pitches
- irradiated APTS, mod. with gap: in general larger pitches are less efficient as the irradiation level gets higher

14

Irradiation

APTS resolution - resume

- Non irradiated chips: all the designs reach spatial resolution under 4 μ m (ALPIDE ~5 μ m)
- Irradiated chips (modified-with-gap) maintain their resolution performance through all the irradiation levels

Summary and conclusions

ITS3 will be installed during LS3 to be ready for LHC Run 4 (2029-2032).

The sensor qualification with the Analog Pixel Test Structure has shown that:

- From the results of the APTS measurements with the ⁵⁵Fe source:
 - modified and modified with gap APTS show higher charge collection compared to the standard design APTS
 - \circ all the DUT remain operational across all irradiation levels (up to 10¹⁵ 1 MeV n_{eq} /cm).
- Results of data analysis from the APTS beam tests show that:
 - modified-with-gap design is the most efficient compared to the modified and standard design
 - all the tested modified-with-gap sensors show at least 99% detection efficiency over large threshold range, even surpassing (smaller pitches) the ITS3 radiation hardness requirements (10 kGy + 10¹³ 1 MeV n_{eq} /cm).
 - all the sensors show a spatial resolution under pitch/ $\sqrt{12}$ (also irradiated chips all pitches)
- Modified-with-gap design has been chosen as the benchmark for the following steps of the ITS3 R&D (testing with wafer-scale sensors)
- Results on MLR1 chips qualified the 65 nm technology for the use in ITS3 and put the basis for studies on new wafer-scale sensors

ALICE

Thank you for your attention

Backup

Active Pixel Sensor (MAPS)

20

Benefits in ALICE measurements from ITS3

Low-mass dileptons

Beauty-strange mesons

- \circ exclusive reconstruction of B_s^0
- non-prompt D_s^+ (50% from $B^{0,+}$ and 50% from B_s^{0})
- Beauty baryons
 - $\circ \quad \text{non-prompt} \ \Lambda_{c}^{\ *}$
 - \circ exclusive reconstruction of Λ_b^0
- Charm strange and multi-strange baryons
 - \circ Ξ_{c}^{0} (cds), Ξ_{c}^{+} (cus), Ω_{c}^{0} (css)
- Searches for light charm hypernuclei
 - bound state of a Λ_c^+ and a neutron (c-deuteron)
 - bound state of a Λ_c^+ and a deuteron (c-triton)

New Monolythic Active Pixel Sensor designs

- Based on **MAPS** and **TPSCo 65 nm CMOS** technology
- \bullet 50 μm thick
- Three different chip designs for

characterization and qualification purposes:

- 1. Standard type
- 2. Modified type
- 3. Modified type with gap

CHARGE SHARING

ITS3 prototypes and technology validation - MLR1

ALICE Multi Layer Reticle 1 - First submission with the TPSCo 65 nm MAPS technology for the ITS3 Goal \rightarrow test and qualification (long R&D work done together with CERN EP R&D WP1, WP2)

APTS - Analog Pixel Test Structure

- matrix: 6x6 pixels
- readout: direct analogue
- readout of central 4x4
- **pitch**: 10, 15, 20, 25 μm
- design: standard, modified, modified-with-gap

Intensive characterization campaign:

Validation in terms of charge collection efficiency, detection efficiency and radiation hardness

DPTS - Digital Pixel Test Structure

- matrix: 32x32 pixels
- readout: digital with ToT
- **pitch**: 10, 15, 20, 25 μm
- **design**: modified with gap

CE65 - Circuit Exploratoire 65 nm

- matrix: 64×32 or 48×32
- readout: Rolling shutter readout (down to 50 µs integration time
- **pitch**: 15 μm or 25 μm
- **design**: standard, modified, modified with gap

Basic setup components ALICE APTS laboratory setup

DAQ board

- 5V power channel
- USB 3.0 interface to PC

PROXIMITY board

- communication between DAQ board and APTS

DUT CARRIER board

DAQ

Noise	0 V	-1.2 V	-4.8 V
standard	25(0.95)	24(1.03)	23(1.11)
modified	34(0.58)	28(0.84)	24(1.13)
mod.gap	36(0.61)	28(0.85)	24(1.12)

Once the baseline is subtracted from the signal, the noise is evaluated as the standard deviation of the chip output at a frame located n samples before the frame used for the baseline estimation. The number *n* is chosen as the difference between the frame number where the waveform reaches its minimum (used for the signal extraction) and the frame number used for the baseline

25

APTS - noise Modified with gap type

Irradiated sensors show good noise performance up to 10^{-15} 1MeV n_{eq} cm⁻²

This has been confirmed with 99% efficiency reached during beam tests

⁵⁵Fe source setup - INFN-BO

- Source housing diameter: 16 mm _
- Hole: 5 mm _

Active spot

Copper plate

Monel

Welded

- Vertical distance source-chip: almost 3 mm
 - when the source is not use, is inside a concrete holder

55Fe source results - spectrum with APTS Modified-with-gap type - different voltages, INFN-BO

Riccardo Ricci | INFN Bologna

ALICE

28

55Fe source results - spectrum with APTS Modified-with-gap type - different voltages, INFN-BO

Moving from the standard design to the modified and modified with gap:

 \rightarrow the Most Probable Value (MPV)for the seed signal, increases to higher values

 \rightarrow improvement in the signal to noise ratio, from 9 to 18

ALICE

Detection Efficiency - APTS Standard design ALICE

30

Efficiency changes depending on

the applied reverse bias voltage

ITS3 - APTS Results - Resolution Modified design

APTS efficiency - resume 2

INFN Bologna

Riccardo Ricci

ITS3 - Wafer-scale sensors ALICE MOSS

First large-scale stitched sensor, MOnolithic Stitched Sensor (MOSS) received on April 2023:

- Repeated identical but functionally independent units, with in-silicon interconnections and peripheral structures of the sensor
- Laboratory tests: once checked the basic functionalities, full characterization to assess yield of different sensor sections

Validation of a MAPS telescope for future use in beam test setup

- Telescope with 4 MAPS (ALTAI, similar to the ALPIDE used in the current ALICE ITS2)
- Tested at CERN PS by June 2024
- Sensors are fully efficient

Validation of a MAPS telescope for future use in beam test setup

- Telescope with 4 MAPS (ALTAI, similar to the ALPIDE used in the current ALICE ITS2)
- Tested at CERN PS in June 2024
- Sensors are fully efficient
- Event display (WIP)

Validation of a MAPS telescope for future use in BLICE beam test setup Efficiency and resolution

Typical analysis procedure with Corryvreckan

Analysis flow:

- masking
- prealignment (telescope and DUT)
- alignment telescope
- alignment DUT
- analysis

Telescope alignment:

- Performed excluding the DUT from the track reconstruction
- NO region-of-interest inside the sensor

DUT alignment:

- 4 steps with decreasing spatial cut
 - spatial cut decreases starting from 4*pitch to the APTS pitch
- baseline selection: frame 96
- signal selection: frames 98-101

Analysis with Corryvreckan - Noise estimation

For each pixel obtained a gaussian distribution:

- the RMS of the pixel value distributions is the noise
- noise estimation done for all the analysed runs
- resolutions and efficiencies plotted only for: threshold > 3*RMS

- **Baseline** selection: frame 96 (Nb)
- Signal selection: minimum searched between frame 98 and 101 (Ns)
- **Noise** selection: frame 2Nb Ns \rightarrow same done for APTS in laboratory

APTS Leakage Current

40

Monolithic Active Pixel Sensors (MAPS)

- The single Si chip includes both detection volume and readout electronics (instead of connecting two different units hybrid pixel sensors)
- ➤ Many advantages:
 - \circ $\,$ small pixel pitch O(10-30 $\mu m)$
 - \circ lower power consumption O(10-100 mW/cm²) thanks to lower capacitance
 - thin: <50 μ m (0.05% X₀)

41

ALICE

Pointing resolution and vertex detectors layers

The pointing resolution σ_p can be written as:

$$\sigma_p \sim \sigma_p^{sp} \oplus \sigma_p^{ms}$$

where $\sigma_{p^{ms}}$ is the contribution due to the multiple scattering and $\sigma_{p^{sp}}$ the one given by the structure of the detector (number of layers ad proximity to the Interaction Point.)

This indicates that is possible to achieve a better σp by having a better spatial resolution of the detector, going closer to the IP, and having a lower material budget (in this particular case, of the beampipe and the innermost layer).

$$\sigma_p^{ms} \sim r_1 \theta_{RMS} \qquad \qquad \sigma_p^{sp} = \sqrt{(\frac{r_2}{r_2 - r_1}\sigma_1)^2 + (\frac{r_1}{r_2 - r_1}\sigma_2)^2}$$