
Radiation tolerance tests of key electronic components of the dRICH RDO

The PDU radiation environment

The dRICH-PDUs are in a moderately hostile radiation environment, which causes:

- SiPM degradation.
- Lower reliability on electronic component functioning.

Expected radiation exposure, including a 5 safety factor (ref data: https://wiki.bnl.gov/EPIC/index.php?title=Radiation Doses):

 $TID_5 \cong 2.3 \text{ krad}$ (for 1000 fb⁻¹)

 $\varphi_5(p+n>20 MeV)\cong 700~Hz/cm^2$

- Cumulative effects: during the component life, the integrated
 TID increases the power consumption up to a final damage.
- Single Event Effects (SEE): localized event induced by a single particle producing ionization through nuclear collision:

Transient (SET): spurious signals propagating in the circuit.

Static (SEU): errors overwriting memory location.

Permanent (SEL, ...): destructive events (permanent damage).

The PDU radiation environment

The dRICH-PDUs are in a moderately hostile radiation environment, which causes:

- SiPM degradation.
- Lower reliability on electronic component functioning.

Expected radiation exposure, including a 5 safety factor (ref data: https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses):

 $TID_5 \cong 2.3 \ krad$ $(for 1000 \ fb^{-1})$

 $\varphi_5(p+n>20 MeV)\cong 700~Hz/cm^2$

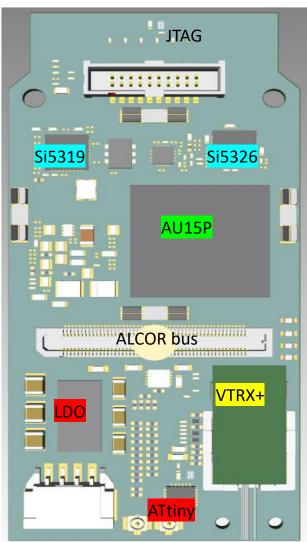
- Cumulative effects: during the component life, the integrated TID increases the power consumption up to a final damage.
- Single Event Effects (SEE): localized event induced by a single particle producing ionization through nuclear collision:

Transient (SET): spurious signals propagating in the circuit.

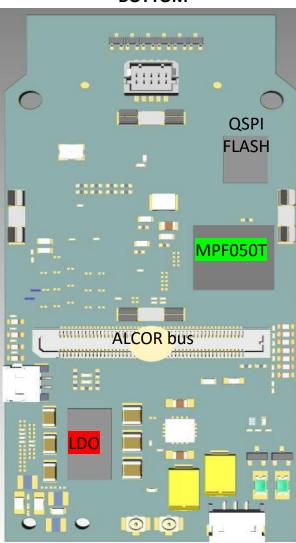
Static (SEU): errors overwriting memory location.

Permanent (SEL, ...): destructive events (permanent damage).

It is IMPORTANT to estimate SEE (SEU and SEL) and TID sensitivities for both RDO card and ALCOR FEBs!



9.0 cm


The RDO Board

TOP

BOTTOM

Ref: https://indico.bnl.gov/event/24127/

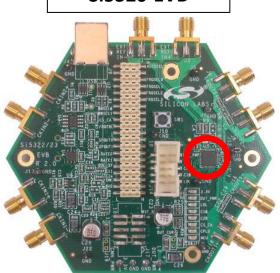
FPGAs

- **AU15P**: **AMD Artix Ultrascale+** main FPGA interfacing with ALCORs.
- MPF50T: Microchip PolarFire FPGA responsible for the AU15P configuration (see later ...).

Clock multiplier

Si5319 and Si5326 from Skyworks Solutions.

Power management


- 2 LDOs LTM4709 for different power rails.
- **Microchip ATtiny417** μcontroller, controlling power consumption.

Data link

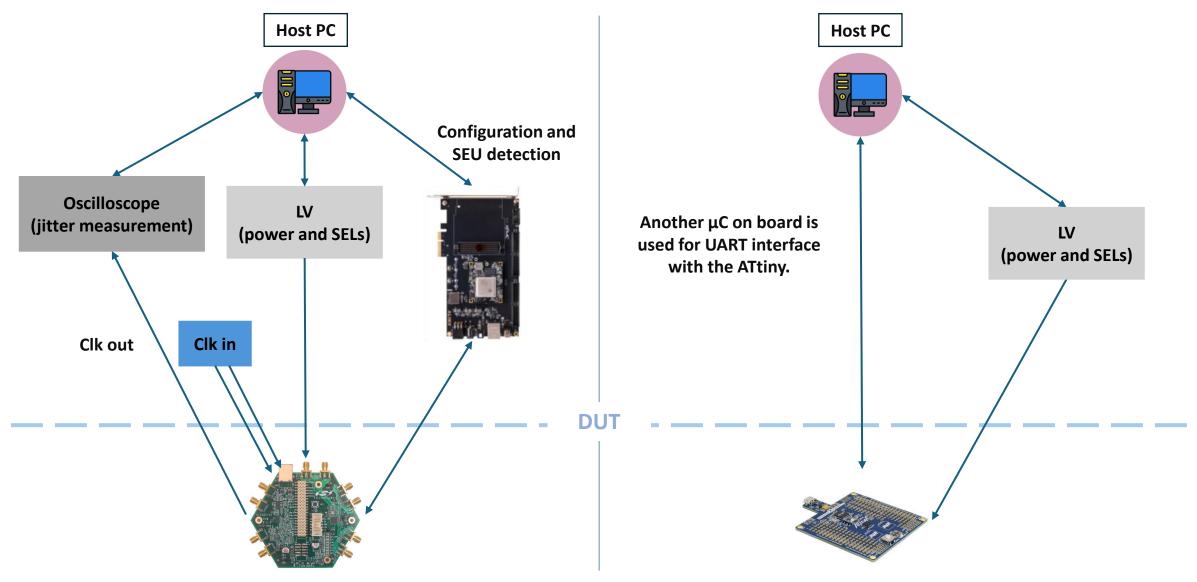
• **VTRX+**: optical transceiver.



ALINX XCAU15P

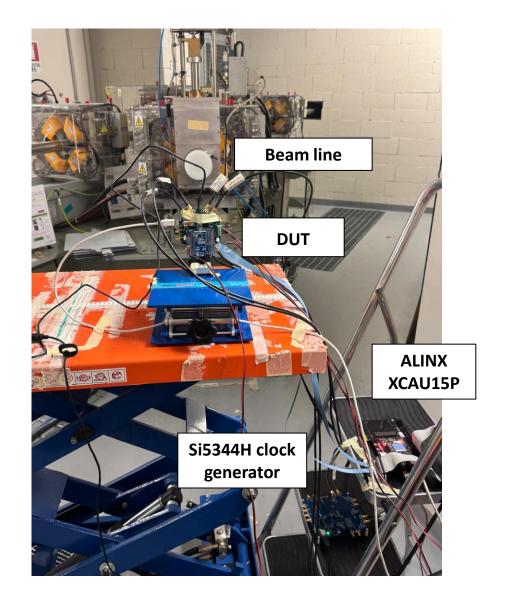
Proton irradiation campaign (@Proton Irradiation facility in Trento)

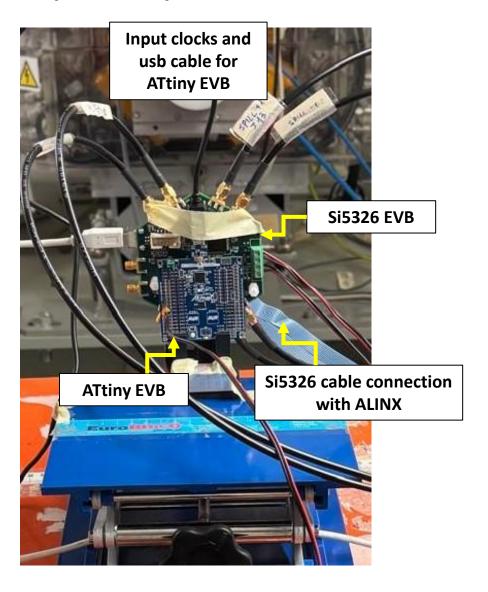
Waiting for the RDO...


Irradiation session:

- Si5326 and ATtiny EVBs on a proton beam at 100 MeV kinetic energy (using a 108 Hz/cm² flux).
- ALINX XCAU15P board on a proton beam at 70 MeV kinetic energy (using a 10⁶/10⁷ Hz/cm² flux).

Si5326 and ATtiny setup





Si5326 and ATtiny setup

Results

ATtiny817 μcontroller

- Monitored memory: 6.6/8 kB of FLASH (53 kb) and 450/512 B of SRAM (3.6 kb).
- 21 SEUs detected on SRAM, while 0 SEUs on FLASH memory after 1026 s.
- TID = 23 krad (dose rate = 1-2 krad/min)
- The ATtiny stopped working at TID = 23 krad.
- **SRAM**: $\sigma_{\text{SEU}} = (3.89 \pm 0.54) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$
- FLASH memory (limit @ 95% C.L.): $\sigma_{SEU} < 2.32 \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$

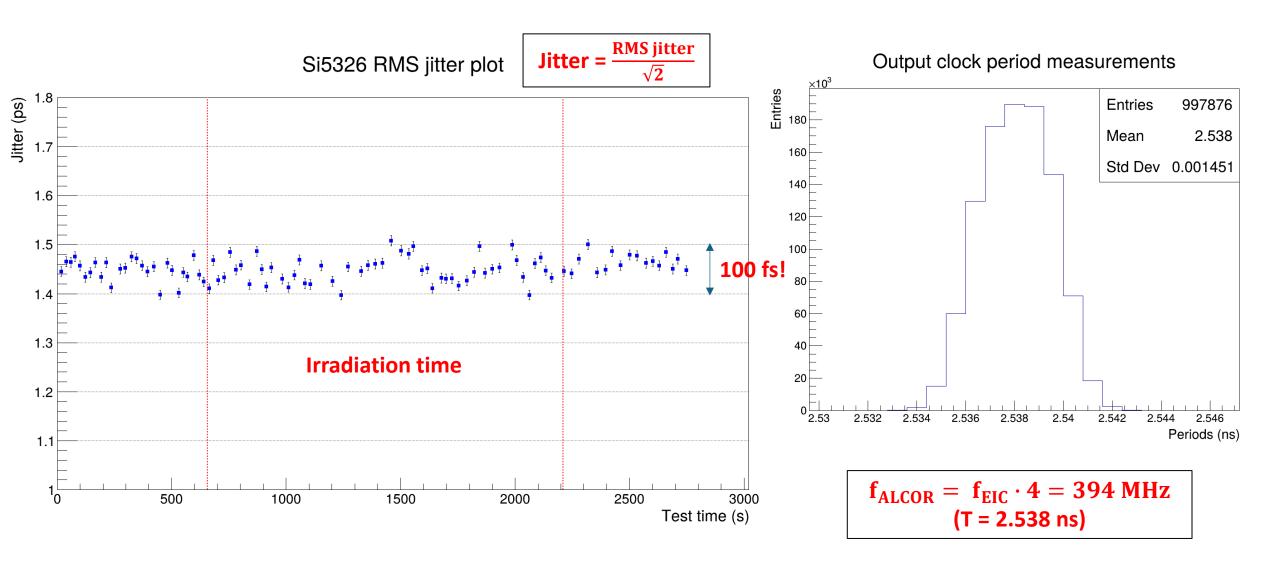
MTBF in the dRICH system (1248 RDOs) for ATtiny417:

SRAM (256B): 4.0 h FLASH (4kB): > 43 h

Si5326 clock multiplier

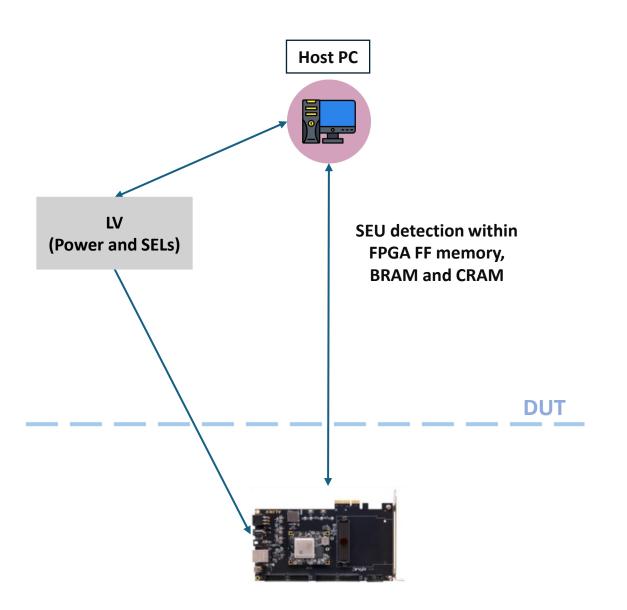
- Monitored memory: 2007/2048 bits of configuration memory.
- 19 SEUs and 0 SELs detected after 1553 s.
- TID = 42 krad (dose rate = 1-2 krad/min)
- Besides the SEUs, the device did not lose the PLL lock keeping the output clock period stable.

•
$$\sigma_{\text{SEU}} = (2.11 \pm 0.50) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$$


MTBF in the dRICH system (1248 RDOs) for each Si5319 and Si5326:

3.8 h

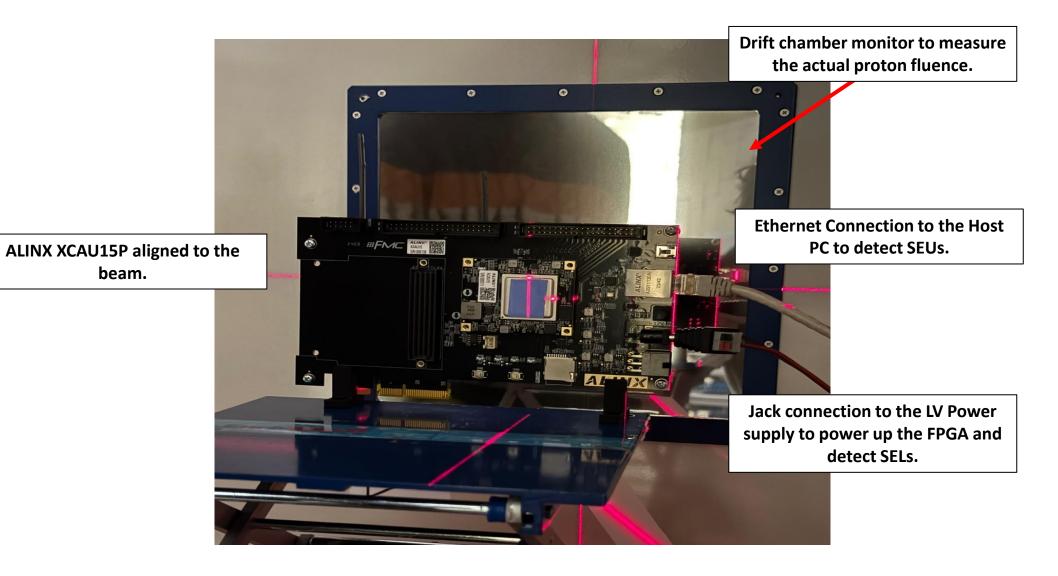
Jitter and period of the output clock



ALINX XCAU15P setup

The AU15P checks its own memory (communication via IPbus over Ethernet link):

- FF chains and Block RAM buffer were configured with a fixed pattern and checked continuously.
- Configuration RAM was checked by the Soft Error Mitigation (SEM) IP core by AMD (ref: https://www.xilinx.com/products/intellectual-property/sem.html).


The SEM IP is configured in **«mitigation and testing»** mode:

- It locates the errors through ECC and CRC approaches.
- It corrects the error if the location is identified.
- It checks all the configuration memory.

ALINX XCAU15P setup

Results

- Monitored memory: 8/156 kb of FF memory, 3.6/5.1 Mb of BRAM and 33/33 Mb of CRAM.
- **0 SEUs** detected on **FF memory** and **69 SEUs** on **BRAM** after 2560s.
- 70 corrected SEUs, 11 uncorrected SEUs and 1 dead link detected on CRAM after 2560 s.
- No SEL detected after 3632 s.
- TID = 6.36 krad (dose rate = 10-500 rad/min) after 3632 s.

FF memory (limit @ 95% C.L.): $\sigma < 3.5 \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$ MTBF (156 kb) in the dRICH system (1248 RDOs): > 3.6 min

BRAM:
$$\sigma_{SEU}=(1.78\pm0.23)\cdot10^{-15}\frac{\rm cm^2}{\rm bit}$$
 MTBF (5.1 Mb) in the dRICH system (1248 RDOs): 2.1 min

SEU cross sections and MTBFs (33 Mb) in the dRICH system (1248 RDOs) for CRAM:

	$\sigma_{\text{SEU}} \left(10^{-16} \frac{\text{cm}^2}{\text{bit}} \right)$	MTBF (min)
COR	(1.96 ± 0.25)	2.9
UNCOR	$(3.09 \pm 0.94) \cdot 10^{-1}$	18
TOTAL	(2.30 ± 0.28)	2.5

Conclusions and outlook

1. We integrated $TID \sim 2.8 \cdot TID_5$ for the AU15P, $TID \sim 10 \cdot TID_5$ for the ATtiny and $TID \sim 18 \cdot TID_5$ for the Si5326.

Devices tested up to a TID largely exceeding expected TID @dRICH: no destructive effects seen for TID \leq TID₅

No significative cumulative effect or SEL for Si5326 and AU15P, while the **ATtiny stopped working at TID = 23** krad.

2. **Si5326:** MTBF = **3.8** h (for **1248** RDOs) and the jitter analysis showed the **output clock is very stable.**

The RDO AU15P will control the chip configuration every t ≪ 3.8 h.

3. ATtiny: SRAM MTBF = 4 h and FLASH MTBF > 43 h (for 1248 RDOs).

The FLASH MTBF is a safety limit and key RAM registers will be implemented with TMR checks.

Conclusions and outlook

Ultrascale+ FPGA SEUs cross sections estimated by AMD:

BRAM: $\sigma_{SEU} = (9.8 \pm 1.8) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$ CRAM: $\sigma_{SEU} = (2.67 \pm 0.48) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$

Our CRAM estimate is compatible with the AMD one while our BRAM estimate differs for a factor ~ 2 . Then, our estimates for MTBFs (for 1248 RDOs) are:

Our estimates	$\sigma_{SEU}\left(\frac{\mathrm{cm}^2}{\mathrm{bit}}\right)$	
BRAM	$(1.78 \pm 0.23) \cdot 10^{-15}$	
CRAM	$(2.30 \pm 0.28) \cdot 10^{-16}$	

FF MTBF > 3.6 min and BRAM MTBF = 2.1 min

They are manageable at the AU15P firmware level using TMR,CRC and reset features.

CRAM MTBF = 2.5 min

The RDO MPFT50 as a FLASH based FPGA will work as scrubber, ensuring fast SEU correction.

Conclusions and outlook

Ultrascale+ FPGA SEUs cross sections estimated by AMD:

BRAM: $\sigma_{SEU} = (9.8 \pm 1.8) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$ CRAM: $\sigma_{SEU} = (2.67 \pm 0.48) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$

Our CRAM estimate is compatible with the AMD one while our BRAM estimate differs for a factor ~ 2 . Then, our estimates for MTBFs (for 1248 RDOs) are:

Our estimates	$\sigma_{SEU}\left(\frac{\mathrm{cm}^2}{\mathrm{bit}}\right)$	
BRAM	$(1.78 \pm 0.23) \cdot 10^{-15}$	
CRAM	$(2.30 \pm 0.28) \cdot 10^{-16}$	

FF MTBF > 3.6 min and BRAM MTBF = 2.1 min

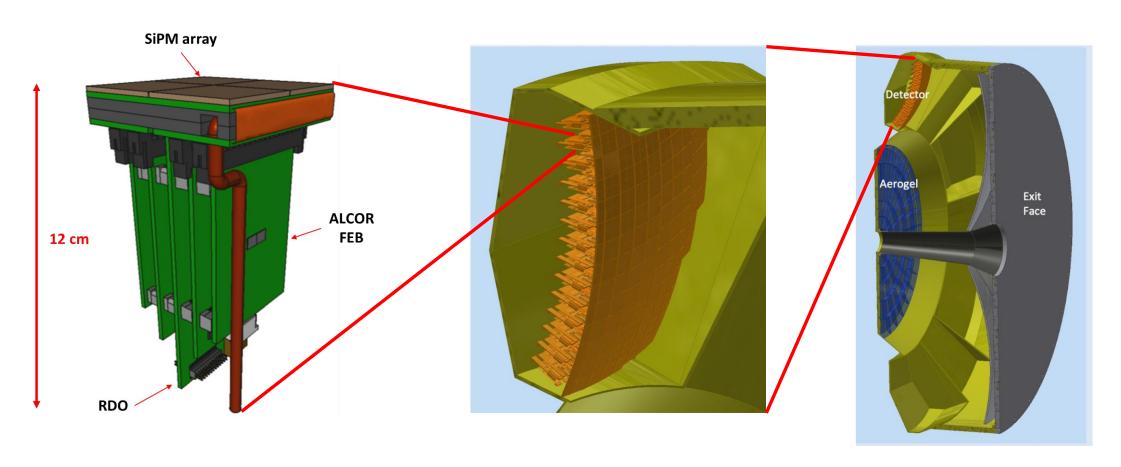
They are manageable at the AU15P firmware level using TMR,CRC and reset features.

CRAM MTBF = 2.5 min

The RDO MPFT50 as a FLASH based FPGA will work as scrubber, ensuring fast SEU correction.

No showstoppers identified for tested RDO components. SEU mitigation strategies are needed in firmware design, as expected!

Thank You for Your attention!



Backup slides

The RDO within the dRICH

Photon Detection Unit (PDU):

- 4 matrices (64SiPMs each)
 - 4 ALCOR64 FEBs
 - 1 RDO board

Detector Box:

• 208 PDUs

dRICH detector:

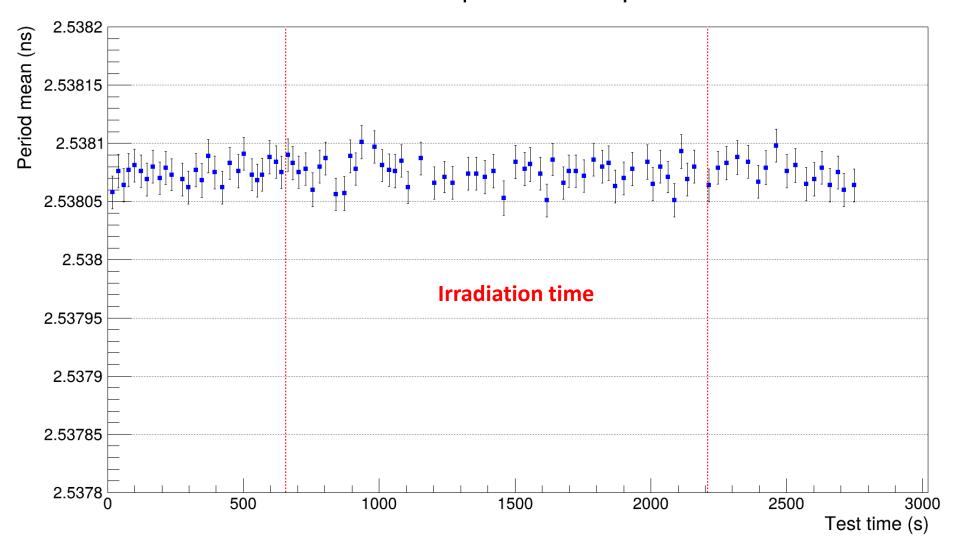
6 sectors for 1248 PDUS

Period jitter measurement

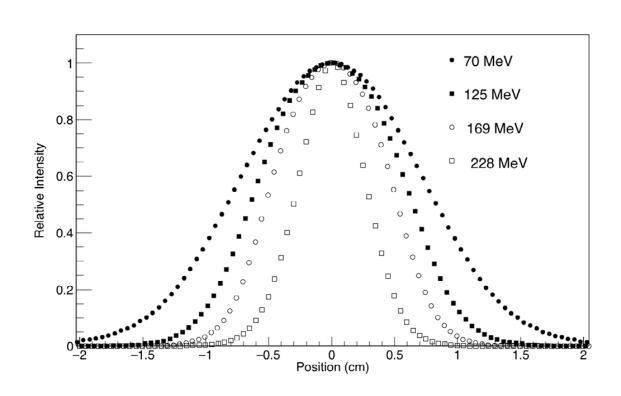
The period jitter measurement was performed as follows:

- 1. The **0.0 mV transition point** at **each rising edge** was estimated.
 - 2. The period was measured as t[i+1] t[i].
- 3. Steps 1. and 2. were repeated after a random number of clock cycles.
 - 4. A gaussian fit was applied to estimate the RMS (RMS jitter).

As the period measurement is the **difference** of two consecutive transition time values:


$$Jitter = \frac{RMS \, jitter}{\sqrt{2}}$$

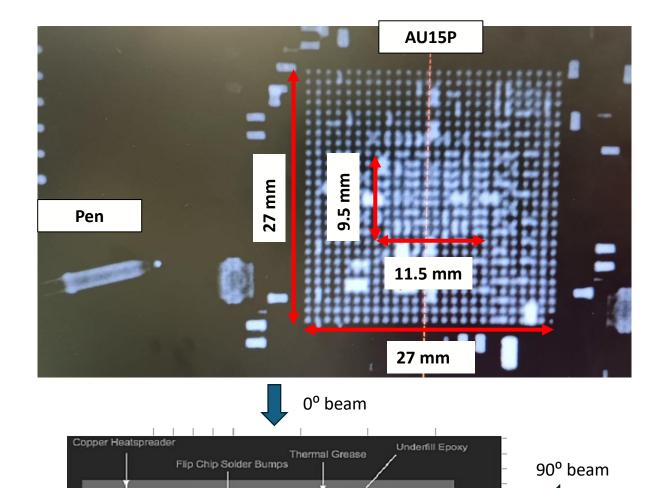
Period mean plot


Si5326 period mean plot

Devices and proton beam

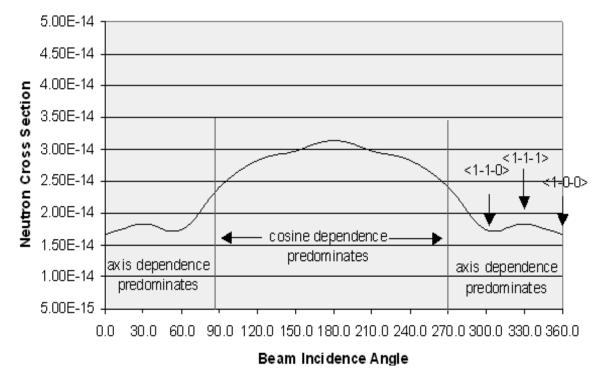
Ref: https://www.sciencedirect.com/science/article/pii/S 0168900217306654

DUT	Area (cm²)	
ATtiny817	0.16	
Si5326	0.36	
AU15P Die	~1.1	


E (MeV)	σ_x (mm)	σ_y (mm)	Asymmetry (%)
70.2	6.93	6.91	0.1
73.9	6.63	6.74	0.8
82.7	6.28	6.41	1.0
90.8	6.04	6.15	0.9
100.0	5.63	5.73	0.8

Energy [MeV]	Range [g/cm²]	FWHM [mm]	Intensity [p/s]
70	4.1	16.2	3.83E+06
74	4.5	15.9	-
83	5.5	15.2	7.50E+06
91	6.5	14.6	9.94E+06
100	7.72	13.7	1.19E+07

The AU15P die and Flip-Chip package effect



Organic Buildup Substrate

Is the ~2 factor for the BRAM SEU cross section due to the effect of the FPGA package? Such an effect was shown for the CRAM bits of a Virtex-II FPGA

(ref: https://www.researchgate.net/publication/3430143).

Silicon Die

itectic Solder Ball

180° beam

Configuration memory MTBF for Microchip FPGAs

Ref: https://www.microchip.com/en-us/products/fpgas-and-plds/reliability#seus

In this case the **failure** is not the occurrence of a SEU, but it is the **real failure of the FPGA DAQ system**.