
Strangeness production in jets and in the UE vs multiplicity in Run 3 pp collisions

ALICE e-PIC Meeting - 29/01/2025

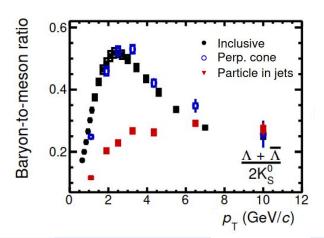
https://indico.cern.ch/event/1503581/

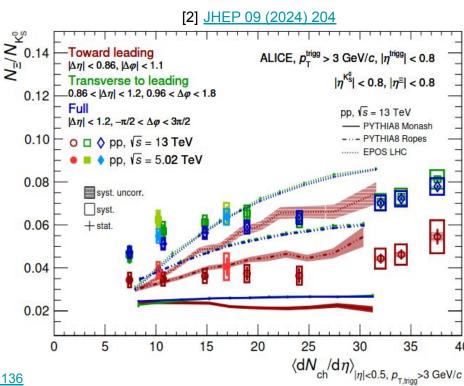
Alberto Calivà, Francesca Ercolessi, Nicolò Jacazio

Physics Motivation

Continuous evolution of strange hadron yield ratios to pions with the charged-particle multiplicity observed at the LHC, smoothly connecting different systems and energies

Strangeness production **increases with** particle **multiplicity**, saturating for central Pb–Pb


Strange content hierarchy:


$$|S_{\Omega^\pm}| > |S_{\Xi^\pm}| > |S_\Lambda| pprox |S_{ ext{K}^0_{ ext{S}}}|$$

State of the Art

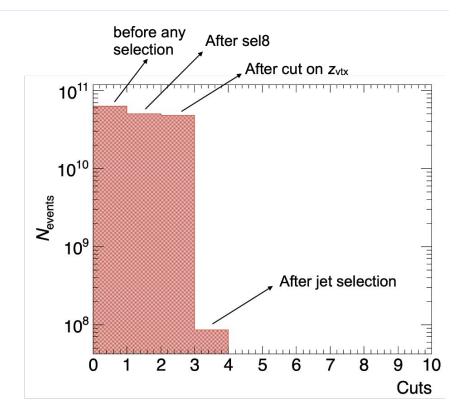
- [1] Densities and baryon/meson ratios vs. p_T , full jet reconstruction (p_T (jet) > 10 GeV/c)
- [2] Trigger particle as a proxy for the jet axis $(p_T > 3 \text{ GeV/}c) + \text{angular correlation}$

Goal: Extend the study using full jet reconstruction as a function of multiplicity

[1] JHEP 07 (2023) 136

Data set and event selection

Dataset: <u>LHC22o_pass7_minBias</u>

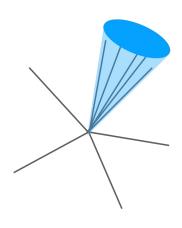

Runs: 526641, 526964, 527041, 527057, 527109, 527240, 527850, 527871, 527895, 527899, 528292, 528461, 528531

Event selection

Sel8

• $|z_{vtx}| < 10 \text{ cm}$

Selections	$N_{ m events}$
Before any selection	62.191×10^9
After sel8	49.590×10^9
After z-vertex cut	47.803×10^9
After jet selection	85.024×10^6

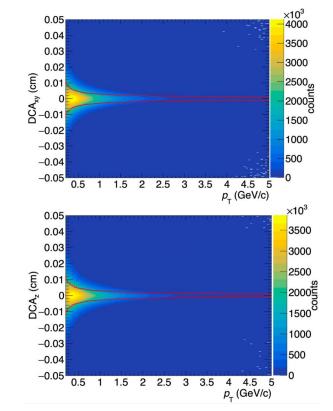


Analysis Task: https://github.com/AliceO2Group/O2Physics/blob/master/PWGLF/Tasks/Strangeness-in-jets.cxx

Francesca Ercolessi PWG-LF Preview 27/01/2025

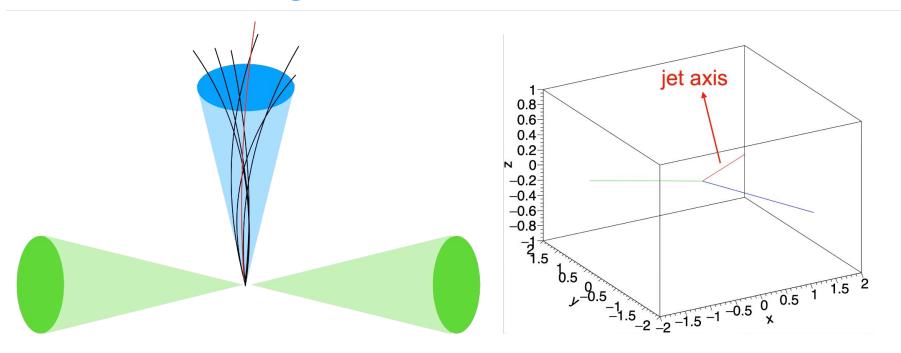
Jet finder and track selection

Anti-KT jet clustering algorithm → <u>Alberto's contribution</u> at the past ALICE-ePIC meeting



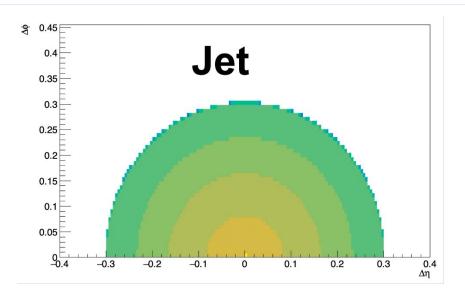
M. Cacciari and G. P. Salam https://arxiv.org/pdf/0802.1189

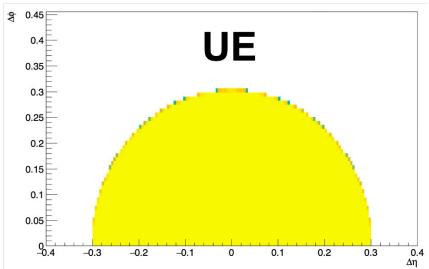
Variable	Requirement
hasITS	True
hasTPC	True
$N_{\rm ITS}$ clusters	≥ 3
$N_{\rm TPC}$ crossed rows	≥ 70
$\chi^2/N_{\rm TPC}$ clusters	< 4
$\chi^2/N_{\rm ITS}$ clusters	< 36
DCA _{xy}	$< (0.00164 + 0.00231/p_{\rm T}) \text{ cm}$
$ DCA_z $	$< (0.00177 + 0.00255/p_{\rm T}) \text{ cm}$
Pseudorapidity (η)	[-0.8, 0.8]
$p_{ m T}$	> 0.15 GeV/c
	—


 p_T -dependent selections for both DCA_{xy} and DCA_z

- Fit central core of the DCA distributions using a Gaussian
- ullet Parametrizations correspond to the range $\pm 1\sigma$

Francesca Ercolessi PWG-LF Preview 27/01/2025

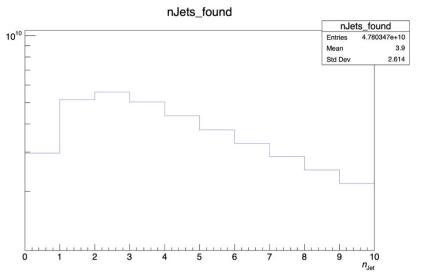

Underlying event: perpendicular cone

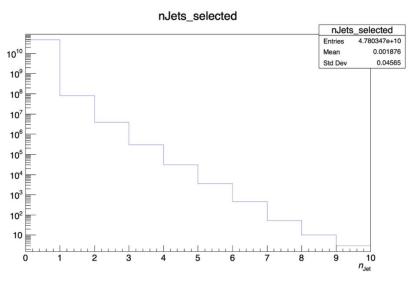


Underlying event estimated using two cones of radius R = 0.3

- perpendicular to the jet axis
- same η as the jet

Δη – Δφ [®] correlation Motivation




Area cut is applied for normalization: $\sqrt{(\eta_i - \eta_{\rm jet})^2 + (\phi_i - \phi_{\rm jet})^2} < 0.3$

- \bullet $\Delta\eta$ — $\Delta\phi$ of charged particles found inside jet has a peak at (0,0) as expected
- Uniform distribution for the UE as expected

Jet selection

- ullet Jet must be fully contained in the acceptance: $|\eta_{
 m jet}|+R<0.8$
- At least two charged particles
- $\sum p_{\mathrm{T}} > 10$ GeV/c (after event-by-event subtraction of the UE)
- No overlap between any pair jet-jet, jet-UE or UE-UE cones in events with multiple jets

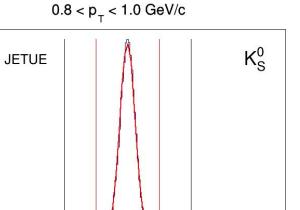
Francesca Ercolessi PWG-LF Preview 27/01/2025

Analysis details

V0s	
Topological variable	Cut K_S^0 , Λ , $\bar{\Lambda}$
V0 transv. decay radius	> 0.50 cm && < 40 cm
DCA Dau Track to PV	> 0.1 cm
V0 Cosine of Pointing Angle	> 0.99
DCA V0 Daughters	< 0.5 cm
N _{TPC} crossed rows	> 80
TPC χ^2	< 4
$p_{\mathrm{T}}^{\pi}(\mathrm{K}_{\mathrm{S}}^{0})$	[0.3,10] GeV/c
$p_{\mathrm{T}}^{\pi}(\Lambda)$	[0.1,1.5] GeV/c
$p_{\mathrm{T}}^{p}(\Lambda)$	[0.3,10] GeV/c
Other selections	Cut
TPC dE/dx Selection (Real data only)	$< 3\sigma$
Primary Selection (MC Only)	AliStack::IsPhysicalPrimary()
MC Association (MC Only)	PDG code association V0
Daughter Track Pseudorapidity Interval	$ \eta < 0.8$
N sigma signal extraction	$\pm 6\sigma$

Signal extraction

4500


0.44

0.46

0.48

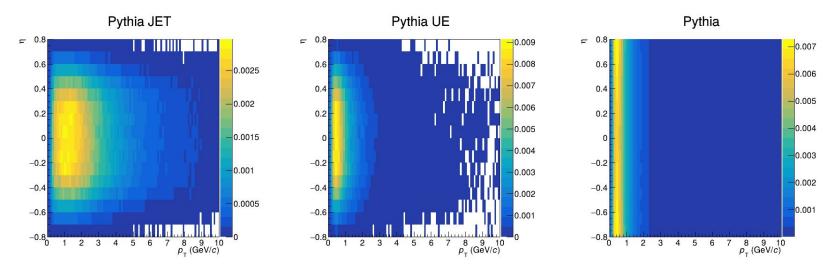
0.5

- fit data Gauss (sgn) + pol2 (bkg)
- bin counting technique ±6σ

0.52

0.54

 $m_{\pi\pi} (GeV/c^2)$

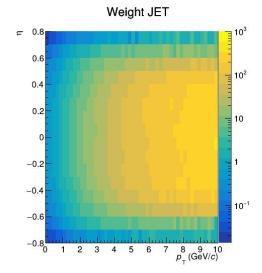

0.56

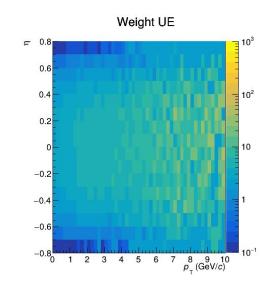
Efficiency correction

LHC24f3c General Purpose MC anchored to LHC22o apass7 13.6 TeV pp MB sample

$$\varepsilon = \frac{N(V0_{\text{reco}+\text{assoc+primary}})}{N(V0_{\text{gen primary}})} \text{ in reco events}$$

Efficiency inside jets and UE are different due to different kinematic distributions 2d (p_T , η) \rightarrow reweighting comparing with the general pythia distribution


Efficiency re-weighting


- 1. The p_{τ} - η distributions of V0s in jet, UE and in pythia are obtained
- 2. The p_{T} and η dependent weights are obtained as:

$$w_{\text{jet}}(p_{\text{T}}, \eta) = \frac{\left[d^2 N / (d\eta dp_{\text{T}})\right]_{\text{jet}}}{\left[d^2 N / (d\eta dp_{\text{T}})\right]_{\text{Pythia}}}$$

$$w_{\text{ue}}(p_{\text{T}}, \eta) = \frac{\left[d^2 N / (d\eta dp_{\text{T}})\right]_{\text{ue}}}{\left[d^2 N / (d\eta dp_{\text{T}})\right]_{\text{Pythia}}}$$

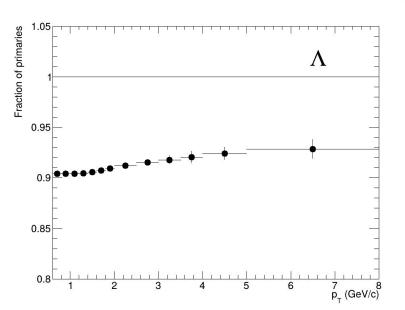
3. These values are used to weight the candidates which fill the numerator and the denominator of the efficiency

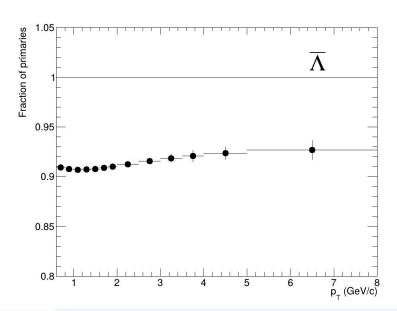
Efficiency correction: K0s

$$\varepsilon = \frac{N(V0_{\text{reco}+\text{assoc+primary}})}{N(V0_{\text{gen primary}})} \text{ in reco events}$$

The weights affect the K0s efficiency up to \sim 25% at low $p_{\rm T}$ and decreasing with momentum

Similar effect (~15%) observed for Λ and anti-Λ





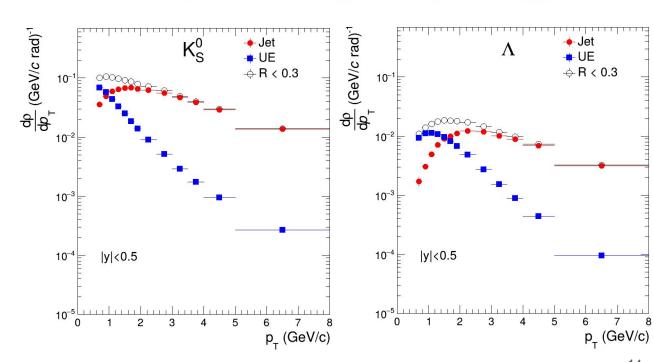
Feeddown correction

Primary Λ fraction is computed from the MC (no Ξ measurement foreseen for the preliminaries but planned for publication):

Primary fraction =
$$\varepsilon_{\text{prim}} = \frac{N(V0_{\text{reco+assoc+primary}})}{N(V0_{\text{reco+assoc}})}$$
 in reco events

Density distribution - MB

To subtract the UE from the JC, a density distribution is defined

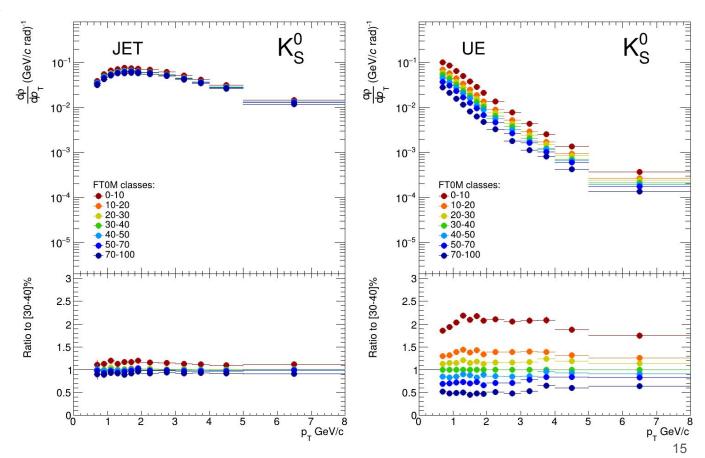

$$\frac{\mathrm{d}\rho}{\mathrm{d}p_{\mathrm{T}}} = \frac{1}{N_{\mathrm{ev}}} \times \frac{1}{A_{\mathrm{acc}}} \times \frac{\mathrm{d}N^{\mathrm{raw}}}{\mathrm{d}p_{\mathrm{T}}}$$

$$= \frac{1}{A_{
m acc}} imes rac{{
m d}N^{
m raw}}{{
m d}p_{
m T}} imes rac{arepsilon_{
m primary}}{arepsilon_{
m reco}}$$

The **JE** density distribution is obtained by subtracting the one of particles in the **UE** selection from that with the **JC** selection

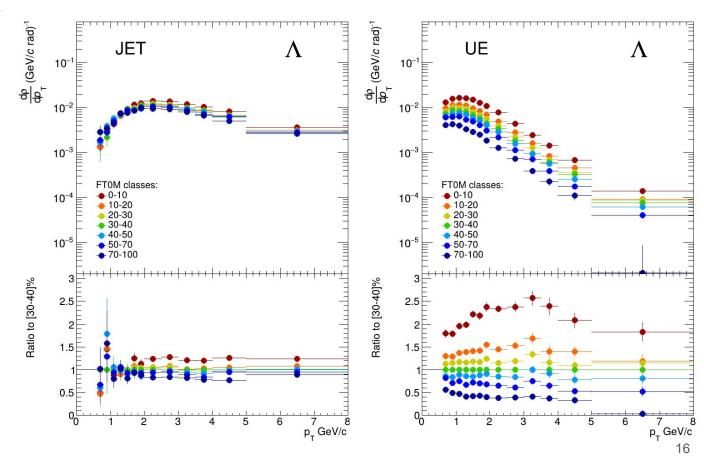
$$rac{\mathrm{d}
ho^{\mathrm{JE}}}{\mathrm{d}p_{\mathrm{T}}} = rac{\mathrm{d}
ho^{\mathrm{JC}}}{\mathrm{d}p_{\mathrm{T}}} - rac{\mathrm{d}
ho^{\mathrm{UE}}}{\mathrm{d}p_{\mathrm{T}}}$$

 $A_{\rm acc} = \pi R^2$, times 2 for the UE



Density distribution - multiplicity

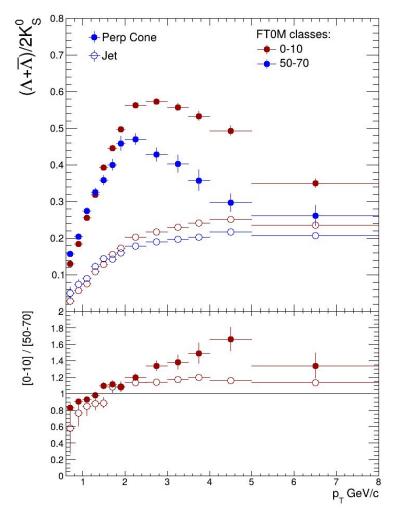
For all multiplicity classes the **JE** spectra are **harder** than the **UE** ones


JE spectra have similar shapes for different multiplicity classes + yields vary only within ~10%

Mild hardening observed for UE spectra + large yield variations in different multiplicity classes

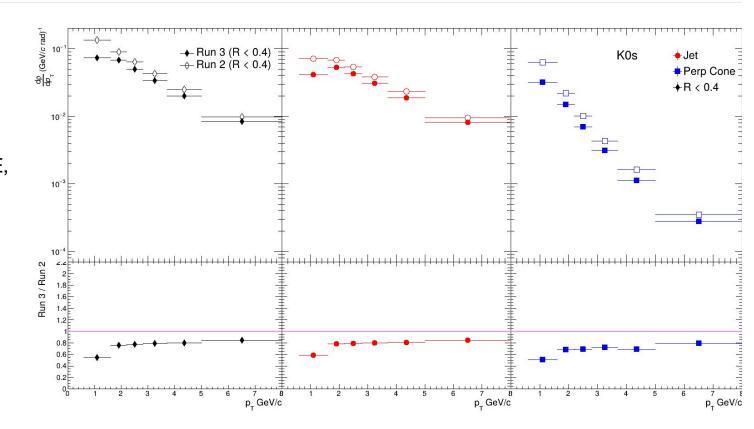
Density distribution - multiplicity

The same comments apply also to the Λ and anti- Λ spectra



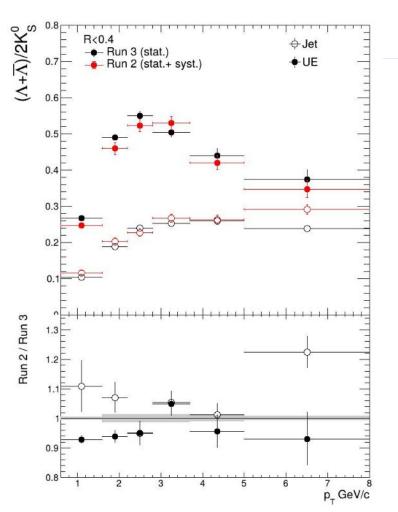
NK0 ratio shown for the highest and lowest(-1) multiplicity class measured

UE spectra exhibit the known enhancement in the mid p_{T} region, while no effect is observed for JE particles


An **evolution with multiplicity** is observed for the **UE**, **mild but significant** effect seen for the **JE**

Comparison to Run 2 - K0s

Comparison with JHEP 07 (2023) 136


Run 3 is lower wrt Run 2 similarly for JE, UE and JC, of ~20% with a larger difference at low $p_{\scriptscriptstyle T}$

Comparison to Run 2

Comparison with JHEP 07 (2023) 136

NK0 ratio is in better agreement with Run 2

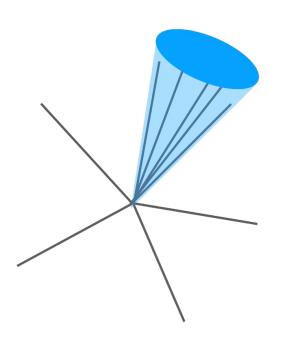
Francesca Ercolessi PWG-LF Preview 27/01/2025

Conclusions

Preliminary approvals ongoing → Monday Preview at the <u>PWG-LF</u>

Today:

- Jet and UE fully corrected spectra of K0s and Λ + anti-Λ measured for the first time as a function of multiplicity using full jet reconstruction with Run 3 pp collisions
- Deviations >~20% observed wrt Run 2 for the single particle spectra
- NK0 ~ in agreement with Run 2


Next steps:

- Systematic uncertainty evaluation
- Understand deviations of single particle spectra from Run 2

For these preliminary results we plan to focus on V0s, but we started to have a look at **Cascades** and **pions** for the publication

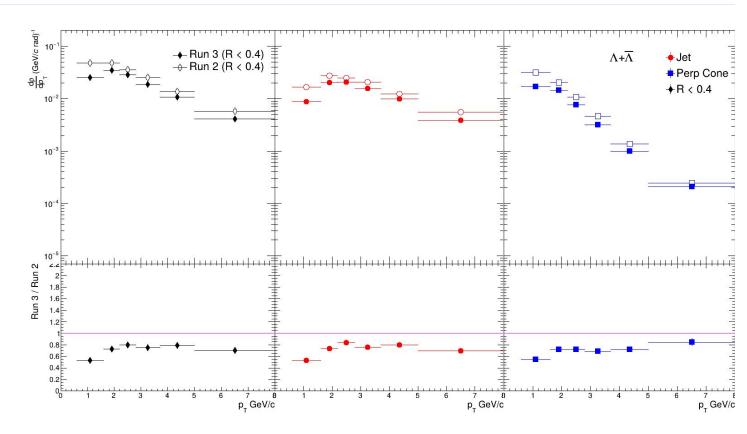
Backup

The anti-KT jet clustering algorithm

M. Cacciari and G. P. Salam https://arxiv.org/pdf/0802.1189

$$d_{ij} = \min\left(k_{ti}^{-2}, k_{tj}^{-2}\right) \frac{\Delta_{ij}^2}{R^2} \longrightarrow \begin{array}{c} \text{Distance between entities} \\ \text{(particles, pseudo-jets) i and j} \end{array}$$

$$d_{iB} = k_{ti}^{-2} \longrightarrow \begin{array}{c} \text{Distance between entity i and the beam (B)} \\ \Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2 \end{array}$$

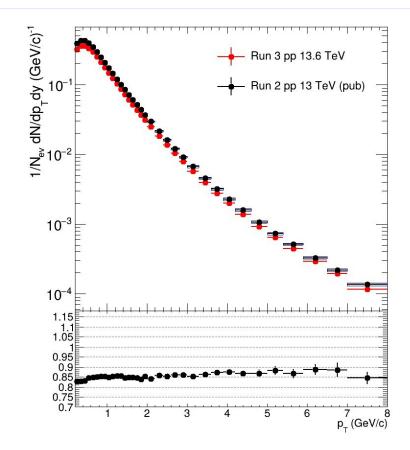

R = 0.3 (jet resolution parameter)

Algorithm: calculate the smallest distance

- If of type d_{ij}: recombine entities i and j (add their momenta) to form a pseudo-jet
- If of type d_{iB}: call i a jet and remove it from the list
- Continue until no entities are left

Comparison to Run 2 - A

The same comments apply also to the Λ + anti- Λ spectra



Status of benchmark MB for V0s

Note that the fully corrected Run 3 MB spectrum of K0s is lower wrt Run 2 with a flat trend in p_{T} of ~ 15%

Likely part of the discrepancy in the jet analysis is related to this observation

Also other aspects are being investigated, e.g. the jet- $p_{\rm T}$ definition in the algorithm with respect to the Run 2 publication

