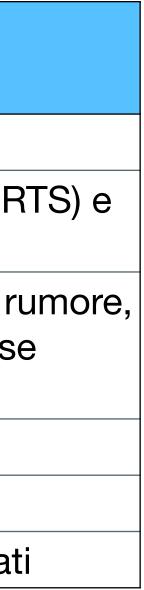
WP3 – Radiation tolerance and cryogenic operation ASPIDES kickoff meeting

Giuliana Fiorillo, Bologna, 31 January 2025

WP3 Scope

Establish the procedures for the radiation tolerance study of the test chip


- with the scientific literature.
- Characterization of i) test chip, ii) prototype and iii) demonstrator in cryogenic conditions
 - operation of the hardware for device cooling and interfacing to the external instrumentation
- Main WP3 contributors: BO, NA, PV, TIFPA, TO + PD, MI
 - collaborate with WP2 in the design of the test boards for radiation tolerance tests and characterization at cryogenic temperatures
 - collaborate with WP4 for TCAD simulation tuning and modeling the effects of radiation and of cryogenic conditions on the device performance

• select the sources for the irradiation campaign and the fluence/dose steps to reach a maximum fluence around 10^{13} 1MeV neutron equivalent/cm² and a maximum dose not exceeding 10 Mrad(SiO2). The selection criteria will into account on the one hand the actual applications and on the other the comparison

Expressions of interest

nome	cognome	email	sezione	ruolo/contributo/interesse							
Giuliana	Fiorillo	giuliana.fiorillo@na.infn.it	NA	WP leader							
Marcello	Campajola	macampajola@na.infn.it	NA	studio del danno da radiazione (aumento DCR, R caratterizzazione a basse temperatura							
Gianmaria	Collazuol	gianmaria.collazuol@pd.infn.it	PD	studi di caratterizzazione del sensore (efficienza, ru tempi) ed effetti danno da radiazione e basse temperature							
Lodovico	Ratti	lodovico.ratti@unipv.it	PV	studio del danno da radiazione							
Luigi	Rignanese	rignanes@bo.infn.it	BO	studi di effetti del danno da radiazione							
Romualdo	Santoro	romualdo.santoro@uninsubria.it	MI	test di qualifica con contributo all'analisi dati							

WP3 Interfaces

- WP2 Testing, data acquisition and integration
 - design and assemble suitable test boards and acquisition systems also for radiation tolerance characterization and tests in cryogenic conditions
- WP4: Sensor characterization, simulation and modeling
 - experimental data extracted after irradiation and from characterization at cryogenic temperatures will be in particular leveraged for modeling the effects of radiation and of cryogenic conditions on the device performance

→ Romualdo

WP3 **Tasks & Milestones**

- Tasks
 - Task 3.1 (M1-M4): definition of the procedures for radiation tolerance study and characterization at cryogenic temperature • Task 3.2 (M5-M12): radiation tolerance tests and characterization at cryogenic temperature of the test chip

 - Task 3.3 (M17-M22): characterization at cryogenic temperature of the prototype chip
 - Task 3.4 (M29-M35): characterization at cryogenic temperature of the demonstrator chip
- Milestones
 - M4: procedure for radiation tolerance test and characterization at cryogenic temperature drafted \rightarrow document 30/4/25
 - M12: radiation tolerance tests and characterization at cryogenic temperature of the test chip completed \rightarrow report 31/12/25
 - M22 characterization at cryogenic temperature of the prototype chip completed \rightarrow report 31/10/26
 - M35 characterization at cryogenic temperature of the demonstrator chip completed → report 30/11/27

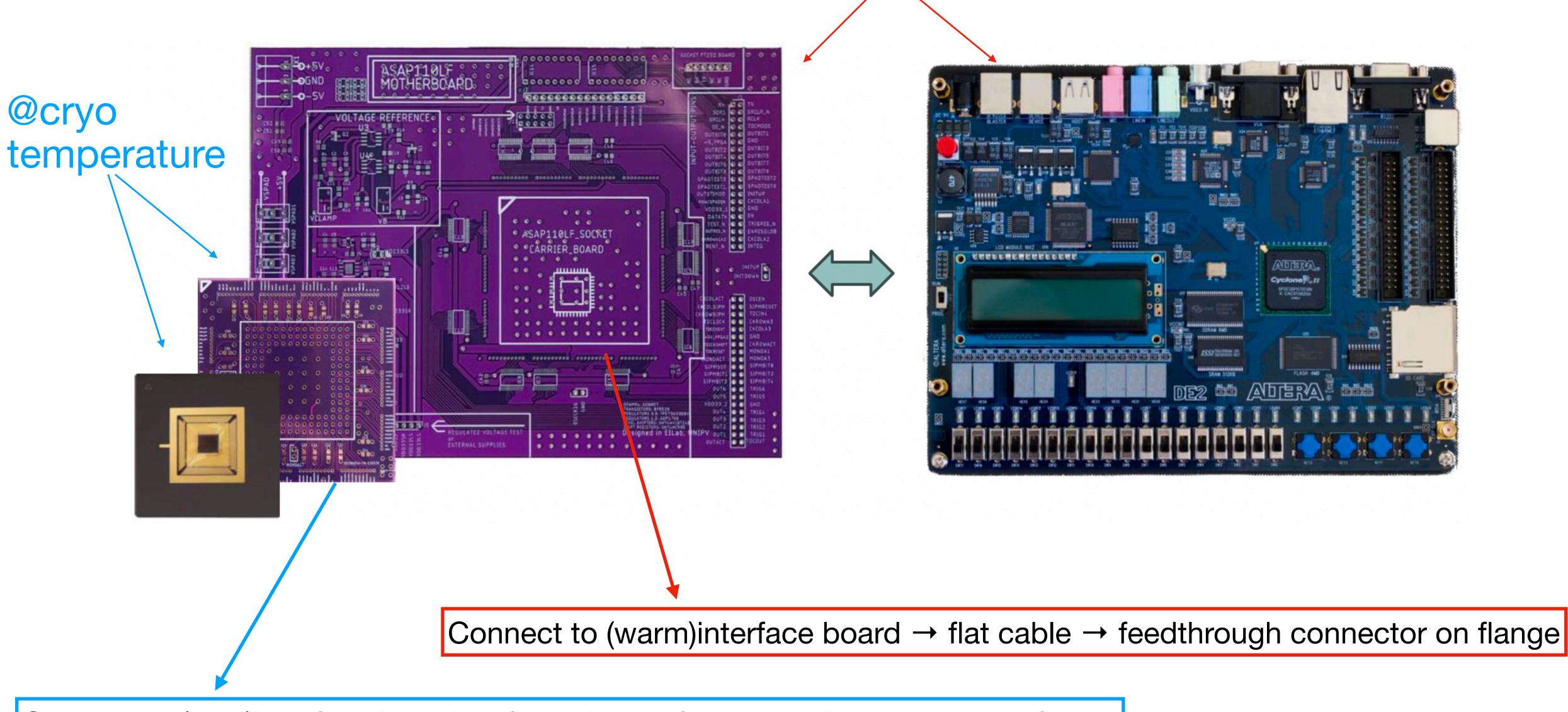
Timeline

Work Package	Task		Q1-25	5		Q2-25	5	Q3-25		;	
WORK Package	TASK	M1	M2	МЗ	M4	M5	M6	M7	M8	M9	
WP1: ASIC design and	T1.1 - Specifications										
verification	T1.2 - Prototype design & production										
	T1.3 - Demonstrator design & production		,	Ļ							
	Milestones	Spe	cificati	ons dr	afted					Prot	
	Deliverables	Spe	ecifica	tion sh	eet						
WP2: Testing, data	T2.1 - Setup for test chip										
acquisition and integration	T2.2 - Test chip characterization										
	T2.3 - Setup for prototype chip										
	T2.4 - Prototype chip characterization										
	T2.5 - Setup for demonstrator characterization										
	T2.6 - Lab characterization of demonstrator										
	T2.7 - Module integration										
	T2.8 - Test of the deonstrator on beam				,	,					
	Milestones		Setup for test chip ready								
	Deliverables	Setup for test chip									
WP3: Radiation											
tolerance and cryogenic operation	T3.2 - Radiation and cryo characterization of test chip										
	T3.3 - Cryo testing of prototype chip										
	T3.4 - Cryo testing of demonstrator				,	,					
	Milestones		Proc			diation ests dra	n tolera	ance	nce		
	Deliverables			Doc	ument	descri		P			
WP4: Sensor	T4.1 - Rad effects and crio operation modeling										
characterization, simulation and	T4.2 - Test of single micro-cells from test chip										
modeling	T4.3 - Test of single micro-cells from prototype chip										
	Milestones						-				
	Deliverables										
				_	_			_			

Q4-25				(Q1-26	6	Q2-26				Q3-26	5	Q4-26				Q1-27			Q2-27	,	Q3-27			Q4-27			
	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32	M33	M34	M35	M36	
ĺ																												
totype submission										Demonstrator submission																		
				Prototuro abia													*							1				
1						Prototype chip													Demonstrator chip									
					Set	tup for	proto	type c	hip rea	dv							Setup for demonstrator ready									Module is ready		
							for pro										Setup for demonstrator						Demonstra					
								,p																		m	odule	
		_	_													-												
		_																										
													,													,		
Radiation and cryo characterization of test chip completed						Cryogenic tests of prototype chip completed														Demonstrator cryo test completed								
Report on test resu											Report on test results												Report on test results					
1																												
	Test				n test o	hip:					Test	ofmic				type							Model for radiation damage and cryo operation available					
completed												cł	nip cor	nplete	d								and Mo	del foi	r radiat	tion da	mage	
																								5	and cry	o oper	ration	

Cryogenic tests Goals & Plans

- Goal:
 - Characterization of the test chip at 77K (LN), possibly also as a function of T (dry system)
 - IV and CV curves, Breakdown voltage
 - Effects on transistors and digital electronics
 - DCR, afterpulsing, electrical and optical cross-talk,
 - QE and PDP/PDE (needs dedicated setup)
 - Time resolution
- Timeline (proposed):


 - campaign in September

\rightarrow feedback to WP4

• Preliminary activities: design cryogenic (wet/dry) setups and interface boards for different measurements

Define warm-cold interfaces by end of February, define procedures by March, setups ready by April • Cryogenic tests on same devices that will be irradiated \rightarrow to be concluded by July, irradiation

Connect to (cold)interface board \rightarrow flat cable \rightarrow feedthrough connector on flange

@room temperature

Radiation damage tests Goals & Plans

- Goal:
 - Characterization of the test chip before and after irradiation
 - DCR (and I_{dark}) increase with the dose
 - Dedicated structures to evaluate the role of STI in DCR performance degradation
 - Effects on after pulsing
 - Random Telegraph Signals (RTS) occurrence
 - Damage mitigation/recovery with low temperature operations and thermal annealing \rightarrow insights on the damage mechanism and feedback to WP4
 - Short- and mid-term annealing during irradiation (neutron and protons) using DCR as a damage probe
- Initial proposals for irradiation campaign:
 - protons (or neutrons), and electrons with integrated fluence in the range 10⁹ to 10¹¹⁻¹² n_{eq}
 - TIDs: 100 krad, 300 krad, 1 Mrad, 3 Mrad, 10 Mrad (may be reduced to three steps for the sake of time)
- Timeline (proposed):
 - April, design&procurement of test boards in WP2 within May
 - Pre-irradiation tests concluded by July, irradiation campaign in September 2025

• Define sources and fluence/dose steps by end of February, select irradiation facilities by March, define procedures by

Summary and Outlook

- Cryogenic test preliminary steps:
 - design cryogenic setups and interface boards for different measurements
 - do we want a (dry) system to characterize the chip as a function of T?
 - system to characterize PDE at cryogenic temperature?
 - interface boards in WP2?
 - groups interested and available facilities (Padova? Torino? Others?)
- Radiation damage test preliminary steps:
 - define sources and fluence/dose steps → will ask Marcello to coordinate this task
 - select irradiation facilities
 - decide how many test chips to irradiate and/or cool down
 - cryogenic characterization before/after irradiation?
- Contact to WP2 \rightarrow Romualdo
- Contact to WP4 \rightarrow Luca/Lucio?

Input from the participants L. Ratti

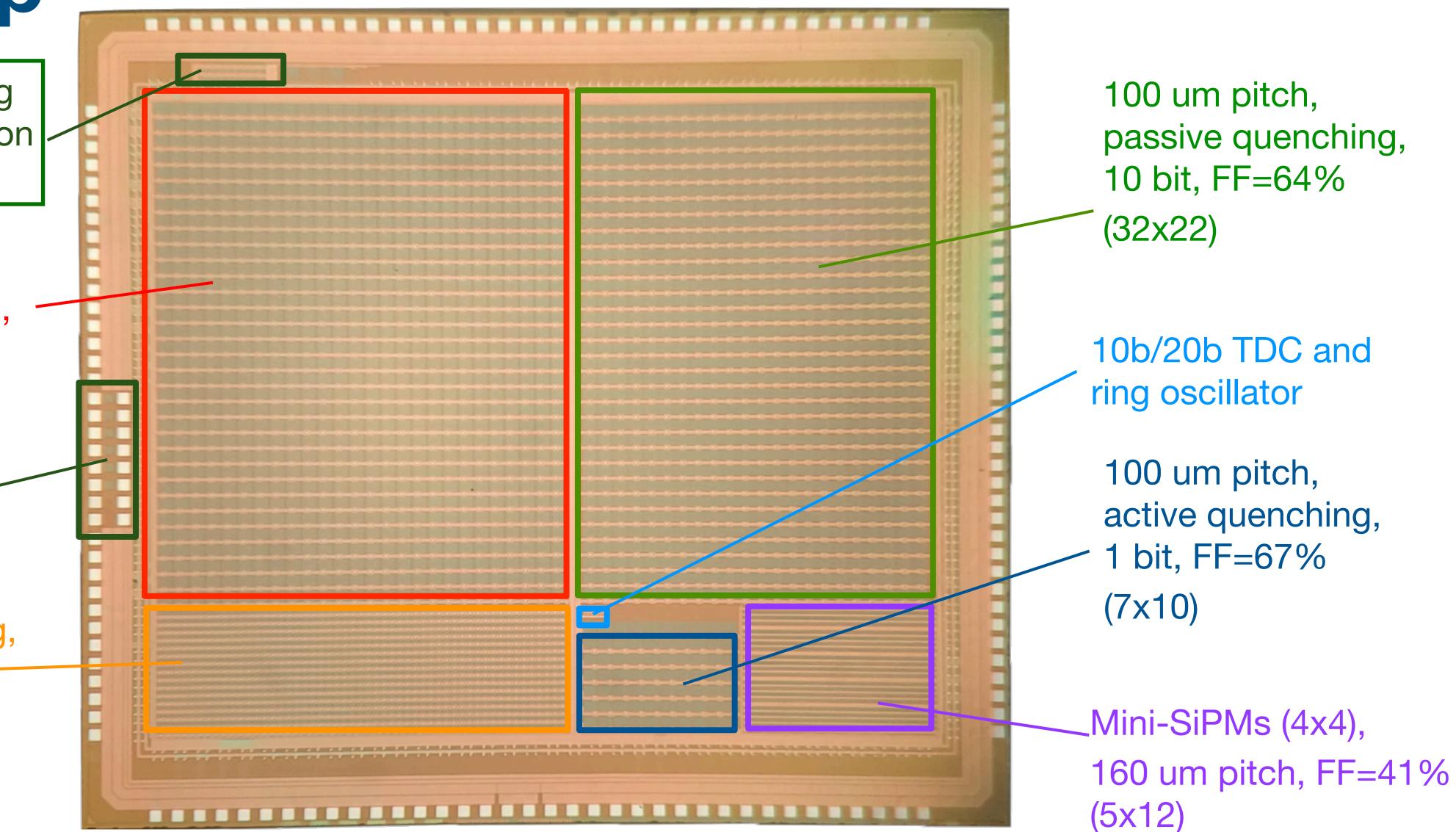
- Ionizing radiation damage
 - nevertheless interesting to see how the device performance evolves with the dose
 - to X-Rays and Neutrons", IEEE Trans. Nucl. Sci., vol. 66, no. 2, Feb. 2019, pp. 567-574)
- Characterization of the test chip (also including dedicated structures to evaluate the role of STI in DCR three steps for the sake of time)
- Possible facilities with irradiation systems can be found in Padova, Pisa, Torino, CERN

• typically not the most alarming problem in CMOS SPADs (especially in comparison with bulk damage), but

• Onset of secondary breakdown observed in SPADs fabricated in a 180 nm CMOS technology, likely related to charge accumulation in STI (see L. Ratti et al., "Dark Count Rate Degradation in CMOS SPADs Exposed

• However, ionization damage, resulting from radiation induced charge accumulation in oxide layers, is strongly technology dependent (see A. Jouni et al., "Effects of X-Ray and y-Ray Irradiations on 2-D-Planar and 3-D-Stacked CMOS SPADs", IEEE Trans. Nucl. Sci., vol. 71, no. 8, Aug. 2024, pp. 1753-1765)

performance degradation) at different TIDs: 100 krad, 300 krad, 1 Mrad, 3 Mrad, 10 Mrad (may be reduced to



structures for timing and ionizing radiation tolerance study

100 um pitch, passive quenching, 1 bit, FF=67% (32x26)

single SPADs

50 um pitch, passive quenching, 1 bit, FF=48% (16x52)

Input from the participants M. Campajola

Radiation damage

Interest in the characterization of displacement damage effects:

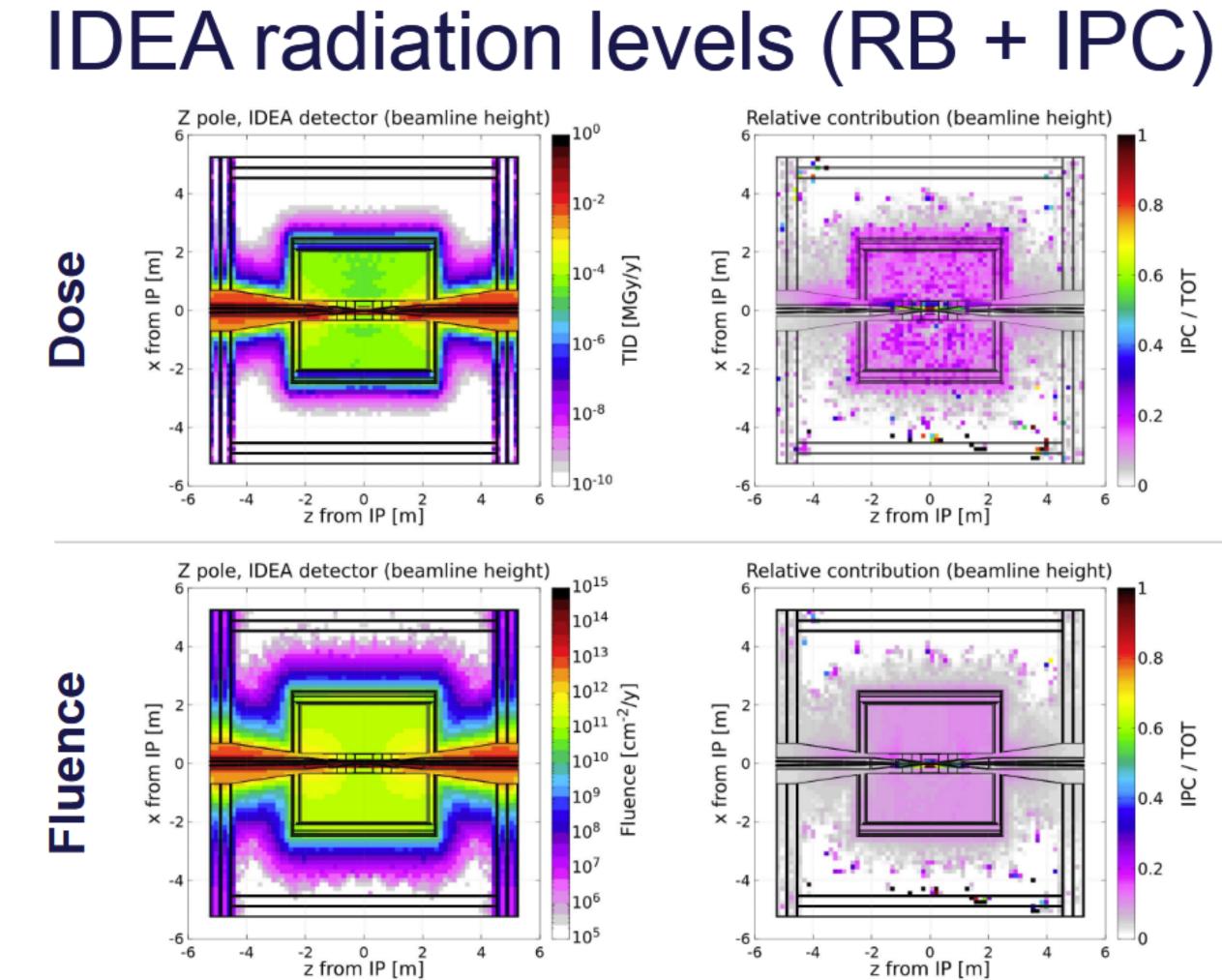
- DCR (and I_{dark}) increase with the displacement damage dose
- Random Telegraph Signals occurrence
- Damage mitigation/recovery with low temperature operations and thermal annealing
 - insights on the damage mechanism

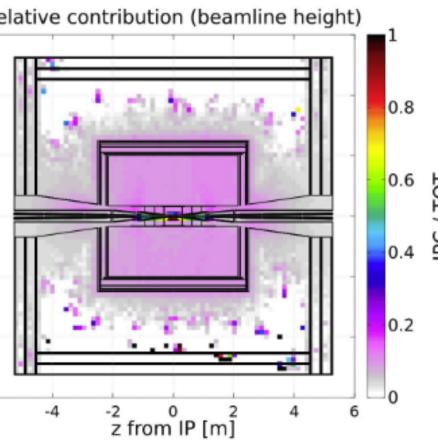
Plan to irradiate samples with:

- protons (or neutrons), and electrons:
 - span over a few orders of magnitude in the range 10^9 to 10^{11-12} n_{eq} [1]
- test NIEL scaling model (for particle species and energies) Timeline:
- second half of 2025, after setup comprehension and devices characterization

[1] Target maximum doses for calorimeters at e+e- colliders. e.g. FCC expected doses

Few possibilities to irradiate samples in Europe:


- protons: TIFPA, UCL (Belgio), CNA (Spagna), IRRAD (CERN)
- neutrons: ENEA Casaccia, INFN-


LNL, JSI reactor (Slovenia)

electrons (2MeV): INCT (Varsavia)

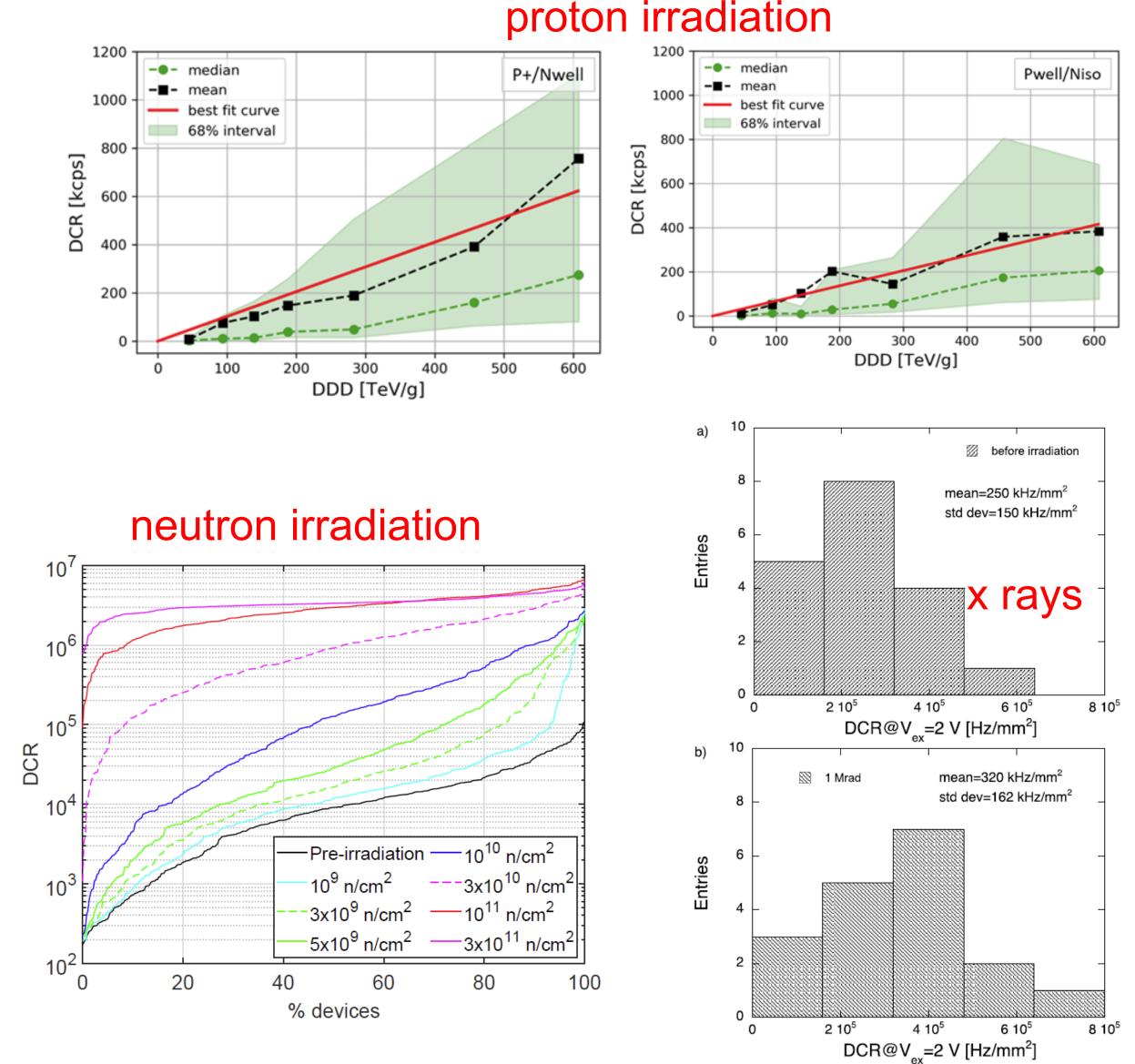
FCC doses

link

incomplete magnetic field map: results will be altered, to be revisited with the a map covering the full detector

- Drift chamber: 100 Gy/year
- Calorimeter: <10 Gy/year
- RB dominates
- IPC contributes up to 20% in the drift chamber

- Drift chamber: 10¹¹ cm⁻²/year
- Calorimeter: <10¹⁰ cm⁻²/year
- RB dominates
- IPC contributes up to 10% in the drift chamber



Radiation damage studies

Large degradation observed in previous studies [1]:

- First 150 nm devices -> few MHz/mm²
 GHz/mm² at 10¹⁰ p/cm²
- APIX 180 nm devices: 1 MHz/mm² [2,3,4]
 - \circ \sim GHz/mm² at 10¹¹ n_{eq}/cm²
 - +30% DCR increase with 1 Mrad

[1] M. Campajola, et al., Proton induced dark count rate degradation in 150-nm CMOS single-photon avalanche diodes, NIMA
[2] M. Musacci, et al. "Radiation tolerance characterization of Geiger-mode CMOS avalanche diodes for a dual-layer particle detector." NIMA
[3] L. Ratti, et al. "Dark Count Rate Degradation in CMOS SPADs Exposed to X-Rays and Neutrons" TNS
[4] A. Ficorella, APPLICATION OF AVALANCHE DETECTORS IN SCIENTIFIC AND INDUSTRIAL MEASUREMENT SYSTEMS, PhD thesis

