WP2 – Testing, data acquisition and integration

R. Santoro

Proposal submitted

WP2 - Testing, data acquisition and integration

WP2 responsible: Romualdo Santoro (MI)

Main WP2 contributors: BA, BO, MI, NA, PD, PV, TIFPA

This WP will be responsible for the development of the hardware and software test systems for the evaluation of the test chip and the prototype and the demonstrator chips in the laboratory environment. WP2 will also define the measurement procedures for the parameters of interest (DCR, after-pulsing, cross-talk, PDP, QE, time resolution), in agreement with well established practice in the field. In collaboration with WP3, the members of WP2 will design and assemble suitable test boards and acquisition systems also for radiation tolerance characterization and tests in cryogenic conditions. The WP will also be responsible for the integration of 2 or 4 demonstrator chips in a module and its characterization in the laboratory and on a beam line.

Proposal submitted

Test chip: ASAP110LF

Prototype chip

Demonstrator

Tasks

- Task 2.1 (M1-M4): design and production of the measurement setup for the test chip (also in view of radiation hardness and cryogenic tests)
- Task 2.2 (M5-M12): test chip characterization (including radiation tolerance and cryogenic tests)
- Task 2.3 (M13-M16): design and production of the measurement setup for the prototype chip
- Task 2.4 (M17-M20): prototype chip characterization (including tests after irradiation and in cryogenic conditions)
- Task 2.5 (M21-M28): design and production of the measurement setup and of the module for the demonstrator chip
- Task 2.6 (M29-M35): laboratory characterization of the demonstrator chip
- Task 2.7 (M32-M35): integration of the demonstrator chip in the module
- Task 2.8 (M36-M36): test of the demonstrator module on a beam line

Milestones

- M4: the measurement system for the test chip is ready
- M16: the measurement system for the prototype chip is ready
- M28: the measurement system for the demonstrator is ready
- M35: the module integrating the demonstrator chip is ready

Deliverables

- M4: measurement system for the test chip
- M16: measurement system for the prototype chip
- M28: measurement system for the demonstrator
- M35: module with the demonstrator

The team: starting point

WP2 - Testing, data acquisition and integration				
nome	cognome	email	sezione	ruolo/contributo/interesse
Romualdo	Santoro	romualdo.santoro@uninsubria.it	MI	WP leader
Lodovico	Ratti	Iodovico.ratti@unipv.it	PV	caratterizzazione di circuiti integrati
Aleksandr	Burdyko	aleksandr.burdyko@uninsubria.it	MI	contributo: design pcb, firmware, qualifica dSiPM
Romualdo	Santoro	romualdo.santoro@uninsubria.it	MI	contributo: qualifica dSiPM
Gianmaria	Collazuol	gianmaria.collazuol@pd.infn.it	PD	interesse: in firmware readout
Nicola	Mazziotta	mazziotta@ba.infn.it	ВА	caratterizzazione senore e test
Luigi	Rignanese	rignanes@bo.infn.it	во	design pcb, scelta FPGA, firmware, qualifica dSiPM
Davide	Falchieri	davide.falchieri@bo.infn.it	во	design pcb, scelta FPGA, firmware, qualifica dSiPM
Marcello	Campajola	macampajola@na.infn.it	NA	interesse in caratterizzazione del sensore

WP2: Starting point

- □ Setup finalization for the test chip: ASAP110LF (M1-M4)
 - Firmware to assess all structures and documentation A small team just started: help would be nice
 - □ GUI and data visualization (?) No-activity: any interest?
 - Hardware production and distribution Lodovico is taking care of it
 - 10 chips available
 - □ FPGA: evaluation kit (obsolete, but there are a lot of boards in Pavia)
 - Any requirement for cryogenic test?

- Feedback would be important!
- Any requirement for radiation hardness test?

WP2: Starting point

- Setup finalization for the test chip: ASAP110LF (M1-M4)
 - Firmware to assess all structures and documentation A small team just started: help would be nice
 - □ GUI and data visualization (?) No-activity: any interest?
 - Hardware production and distribution Lodovico is taking care of it
 - 10 chips available
 - □ FPGA: evaluation kit (obsolete, but there are a lot of boards in Pavia)
 - Any requirement for cryogenic test?

- Feedback would be important!
- Any requirement for radiation hardness test?
- □ Test chip (ASAP110LF) characterization: (M5-M12)
 - Standard condition Preliminary studies
 - Cryogenic test
 - Rad hard test

WP2: Starting point

- Setup finalization for the test chip: ASAP110LF (M1-M4)
 - Firmware to assess all structures and documentation
 A small team just started: help would be nice
 - □ GUI and data visualization (?) No-activity: any interest?
 - Hardware production and distribution Lodovico is taking care of it
 - 10 chips available
 - □ FPGA: evaluation kit (obsolete, but there are a lot of boards in Pavia)
 - Any requirement for cryogenic test?

- Feedback would be important!
- Any requirement for radiation hardness test?
- □ Test chip (ASAP110LF) characterization: (M5-M12)
 - Standard condition Preliminary studies
 - Cryogenic test
 - Rad hard test
- ☐ First WP2 meeting: focus on the requirements from Cryogenic and radiation hardness test

Backup

ASAP110LF chip

ASSTI+APXT**

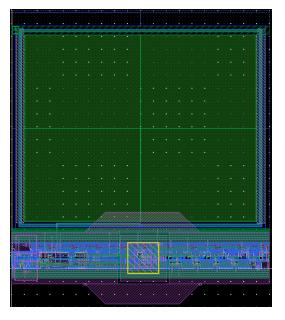
Array 1 (A1) 32x26 pixels AA: 80x84 µm² Array 2 (A2) 32x20 pixels AA: 90x72 μm² Array SSTI 2x8 pixels AA: 30x40 µm² Array PXT 4 pixels AA: various

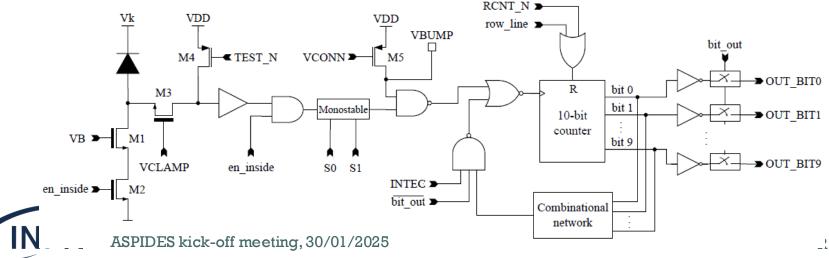
TDC

Array AQ 7x10 pixels AA: 80x84 µm² Array SIPM 5x12 pixels AA₁: 17.5x17.8 μm² AA₂: 22x18 μm²

Array 3 (A3) 16x52 pixels, AA: 30x40 μm²

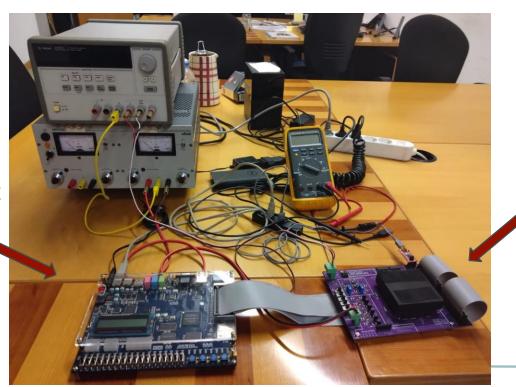
TDC+AAQ+ASIPM



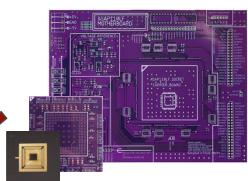

ASAP110LF chip - Array A2

Array 2 (A2) cell:

- The avalanche is quenched by a passive network
- □ The monostable circuit modifies the duration of the sensor pulse (400 ps, 750 ps, 2 ns, transparent mode).
- □ A 10 bit counter automatically counts the pulses.



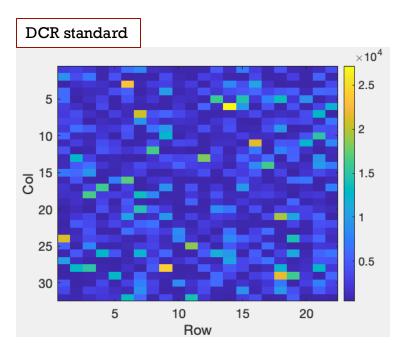
Test setup

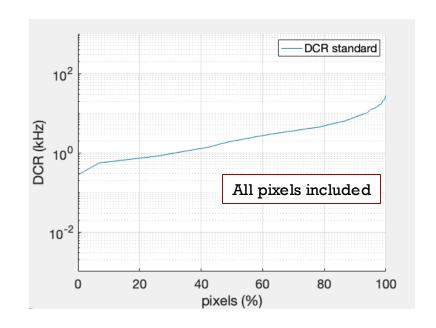


- Two custom boards acting as interface between the FPGA and the chip.
- □ Firmware developed in VHDL
- □ Data acquisition based on protocol RS232 (command line)

FPGA: Altera DE2 (education board)

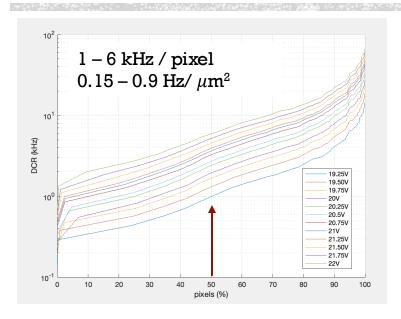
Custom bard + ASAP110LF chip

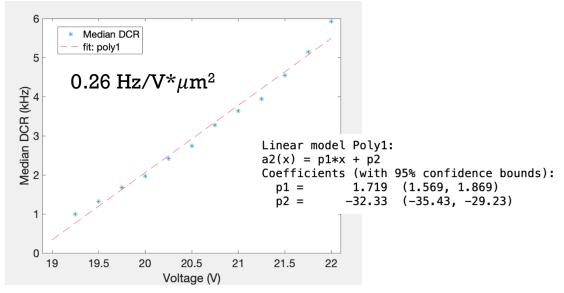


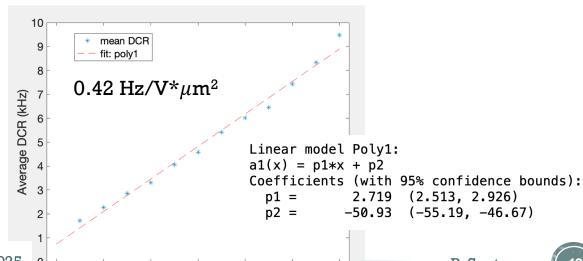


DCR measurements @ 20V

■ We are collecting counts in 30k windows (1 ms long). I'm summing counts in 1000 windows -> Average value is the DCR contaminated by AP (DCR standard)







DCR VS Voltage

21.5

22

19

19.5

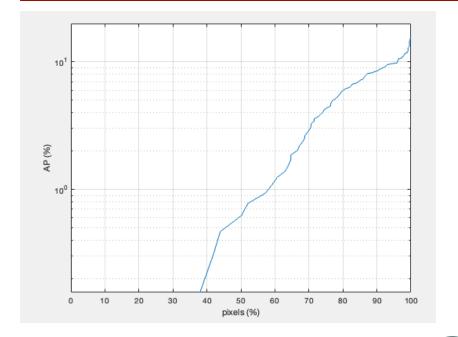
20

20.5

Voltage (V)

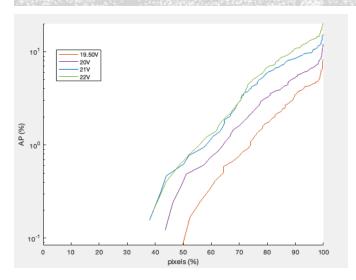
21

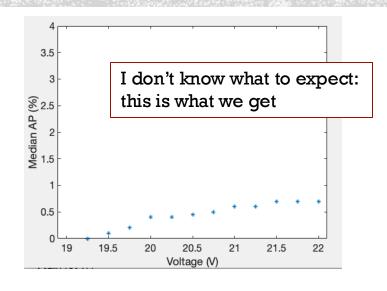
AP measurements @ 21V

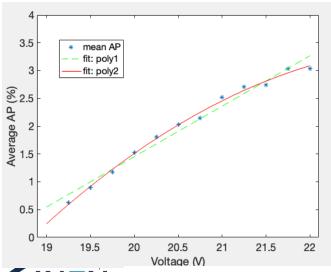


- \square N pixels with wrong windows (N0=0) -> 15.8% (removed from the plots)
- □ N pixels not following the Poisson statistic (chi2/ndf > 20) -> 20%

AP in the matrix: all pixels included (also "wrong windows" and "no-Poisson")


AP, cumulative distribution: only the 64% of all pixels are included in the plot (good pixels)





AP VS Voltage


```
Linear model Poly1:

a1(x) = p1*x + p2

Coefficients (with 95% confidence bounds):

p1 = 0.9079 (0.8111, 1.005)

p2 = -16.7 (-18.7, -14.71)
```