

ASPIDES Kick-off Meeting Dark Matter Detector Applications

G. Fiorillo

University of Naples Federico II, Istituto Nazionale di Fisica Nucleare - Sezione di Napoli Slides courtesy of Giuseppe Matteucci Dark Matter: 85% of the matter in the universe Plausible Candidate: Weakly Interacting Massive Particle Terrestrial Experiments search for Elastic Scattering on Nuclei Expected Signal: Ultra-Rare Nuclear Recoils

DM

TARGET

Recoil Energy

1-100 keV

Direct Detection of Dark Matter

- Requirements:
 - High Exposure
 - Ultra-low background
 - Low Energy Threshold
- Killer Detector Technology: Noble-Element Two Phase Time Projection Chambers (XENON, LZ, PandaX, DarkSide)
- Argon and Xenon

G. Matteucci and G. Fiorillo, "Liquid Argon for Direct Dark Matter Detection", Journal of Advanced Instrumentation in Science, vol. 2024, no. 1, Sep. 2024.

Single Phase Noble Liquid Detector

- Liquid Argon mass instrumented with photosensors
- 4π readout
- Simple design

Cons

- 3D reconstruction not exceptional
- Single detection channel (scintillation), reduced PID capabilities
- No sensitivity to low-mass WIMPs

Two Phase Time Projection Chamber

- 3D Reconstruction for Fiducialization
- PID from S2/S1
- Sensitive to low mass WIMPs with "S2-Only Mode"

Cons

- Gas pocket complicates the design
- Requires HV and transparent electrodes
- Strict geometrical tolerances

State-of-art Photo-Electronics in DM Searches

PMT transitioning to **SiPMs**

Why?

- 1. Compactness
- 2. Radiopurity \rightarrow Background Containment
- 3. Mass Production \rightarrow Scalability

being pioneered on large scale in DM Searches by DarkSide-20k, with FBK SiPMs

Developments for the optical readout in DarkSide-20k

In DarkSide-20k

The DarkSide-20k Experiment

In construction at Hall C of LNGS (3800 m w.e.)

1.

2.

Target background < 0.1 (excluding neutrinos) in 200 t yr

The two-phase TPC of DS-20k

DarkSide-20k TPC:

Walls:

- PMMA
- ESR Reflector
- TPB wavelenght shifter

Top and bottom Plates:

- PMMA
- TPB wavelenght shifter
- Optical planes comprised of SiPM photo-detector units

Fields:

- Clevios coating for Anode, Cathode, Field Cage
- Wire grid of stainless steel

Drift length = 348 cm Active UAr mass in TPC = 49.7 t (20 t fid.) Spatial resolution: xy < 5 cm, z ~ 1 mm

Light readout of DS-20k

TPC:

• Two optical planes of the TPC:

- 21 m^2 in total
- ~100% coverage of cryogenic SiP<mark>Ms</mark>
- 2112 channels, < 5 cm x-y res
- Transparent anode and cathode
- ESR reflector on lateral walls
- Internal surfaces evaporated with TPB

Inner and outer veto:

- Same SiPM technology
- 512+128 channels respectively [~(5+1) m^2]

Cryogenic SiPMs

NUV-SiPMs in Liquid Argon

NUV-HD-CRYO by FBK:

- Reduced DCR (up to 10⁻⁶ with respect to 300K)
- Specific design modifications to contain AP
- PolySi resistor with limited temperature dependance
- Technology for DS-20k developed by Fondazione Bruno Kessler (FBK), mass production by LFoundry

• Problem to solve: large surface single photon detector to reduce no. of analog readouts

SiPM Tile (PDM)

Objective:

- Large Area SiPM Array
- Low Noise

Result of R&D: PDM Tile

• Electronics: Fast Cryogenic Trans Impedence Amplifier (Noise $\propto \sqrt{C_i}$)

SiPM Ganging:

- Many SiPMs in parallel: High Ci
- Many SiPMs in series: Low current
- Compromise: 6p4s configuration
- Precision voltage partitioner to bias the SiPMs

The PDU

16 Tiles Assembled on a Motherboard 4 readout Channel

Total PDUs used (TPC): 528 Readout Channels: 2112

- A Motherboard which houses 16 Tiles \rightarrow
 - Active adders sum tiles in groups of 4 \rightarrow
 - Differential transmitter \rightarrow 4 Readout CHs \rightarrow
- A power Management Unit allows for remote switching of HV and LV for each tile independently

• ~1.8 W consumption in LN

NOA Production Facility

Nuova Officina Assergi

- ISO6 Clean Room
- 420 m²
- Continuous Rn Monitoring
- CR3 Equipped with: Cryoprobe, Dicer Chip Bonder, Wire Bonder Microscopes, Packaging Tools
- PDU Production

PDU Test Facility in Napoli

- ~800 L double wall cryostat with domed flange
- ~100 ps pulsed laser for calibration
- Readout of up to 16 PDUs (64 CHs) with CAEN VX2740 ADC

- Custom support structure with room for 16 PDUs inside the cryostat
- Custom illumination system with PMMA rods as diffusers
- High end local servers for DAQ and Two external 3000L each Acquisition with O(1 PB) storage

- MIDAS DAQ Framework
- Fully automated cold box, remotely controllable with fast FILL and DRAIN
- reservoirs
 - Already testing pre-production

Veto PDU Facilities

Production in Birmingham, STFC interconnect, Manchester, Liverpool → Testing Facilities

(B)

(INFN

PDU: Laser Calibration and SPE

Performance Study in LN2

- Varying overvoltage
- Long term testing

Fall time = 350 ns

PDU: Correlated Pulses

(one method for) Quantifying and monitoring Additional Correlated Pulses

 $N_{hits} = N_{true}(1+K_{DUP})$ $K_{DUP} = ~45\% @ 7 V o.v.$

PDU: SNR, resolution, gain

7

Definitions SNR = 1 PE Ampl. / Noise Resolution = 1 PE Sigma / 1 PE Charge GAIN = 1 PE Charge / e

- **RES** (RAW) = 13%
- SNR (RAW) =
- **SNR** (Matched Filter) = **14**
- Gain = 2.5e6

@ 7 V o.v. and 77 K

 (\mathfrak{D})

INFN

PDU: Stability

- All parameters stable on the order of months (0(1%))
- SPE Stability < 0.5%
- Amplitude stability
 ~0.5%

In Liquid Argon...

BOTTOM

TOP PDU

PDU

 (\mathfrak{D})

INFN

DarkSide Proto-0 - DS-20k Prototype with PDUs

ReD – **Recoil Directionality**

Contraints on directional sensitivity for NR in LArTPCs

2 Phase LArTPC

~6 months LN calibration

> 1 y in cryogenic environment

Agnes. P et al. Eur. Phys. J. C 81, 1014 (2021) DarkSide-20k Collaboration Eur. Phys. J. C 84, 24 (2024)

Next-generation SiPMs for dark matter searches

In DarkSide-20k

Next-Generation Photon Detectors

Analog photon detectors		
<i>Large area</i> (Few readout channels)	Small Area (Many readout channels)	
Lower Signal-to-Noise 👎	Higher Signal-to-Noise 👍	
Less Cables \rightarrow Less Material \rightarrow Lower Background 👍	More Cables \rightarrow More Material \rightarrow Increased Background \checkmark	
Lower Data Throughput 👍	Higher Data Throughput 👎	
Lower Spatial Resolution 👎	Higher spatial resolution 👍	

- Problem worsens with increased area
- Data Throughput mitigated with Zero Suppression
- Best solution: go digital

Experiment	Туре	Photodetector	Area (m ²)
nEXO	LXe	FBK, Hamamatsu, 3DdSiPM	5
DARWIN	LXe	SiPM is one option	8
ΤΑΟ	LSci	FBK	10
DarkSide-20k	LAr	FBK NUV-HD triple dopant	30
ARGO	LAr	SiPM is baseline option	200
DUNE	LAr	Light guide or trap + SiPM	10-1000

Optical area of future experiments with noble liquids

Furthermore...

- ↓ DARK NOISE by turning off hot pixels
- \checkmark CORR. NOISE by silencing cell

These affect sensitivity of DM experiments

SiPM Requirements for DM Searches

Requirements	Dark matter
SiPM Unit area (mm²)	10x10
Micro-cell pitch (µm)	25-30
PDE (%)	> 45
DCR (kHz)	< 0.1 Hz/mm ² (at LN)
AP (%)	Total Correlated Noise Probability (Xtalk + AP) < 60 %
Xtalk (%)	
Trigger	self
Output data: light intensity	
Output data: time	ToA and TOT
Time resolution (ps)	
Module size and form factor	

From ASPIDES Proposal

Parameter	7 V of OV	9 V of OV
Internal Cross Talk probability at 77 K	< 33 %	< 50 %
Dark noise rate at 77 K	$< 0.01 \ Hz/mm^2$	$< 0.1 \text{ Hz/mm}^2$
Afterpulse probability at 77 K [within 5μ s]	-	< 10 %
PDE at 420 nm at 77 K	-	>40 %
Breakdown Voltage at 77 K (SPE charge)	$26.8\pm0.2~\mathrm{V}$	
Breakdown Voltage at 77 K (SPE amplitude)	$27.5\pm0.2~{ m V}$	
Single Cell Capacitance (from SPE charge)	$62.5\pm2.5~\mathrm{fF}$	

TABLE 43. Summary of the SiPM Requirements for the Darkside-20k SiPMs. SPE stands for Single Photon Electron.

Depends on Detector Technology
For TPCs,
$\sigma_t < 10$ ns is acceptable (required for pulse shape discrimination)
For Single Phase Scintill. Detectors, good time resolution can improve fiducialization

σ_t ~ O(200 ps)

Constraints

- A. Low Radioactivity
- B. Low Power: avoid bubbling and minimize required cooling power
- C. Light Collection Efficiency: maximize active surface, keep low encumbrance
- D. PDE: preserve FF & increase QE in NUV-VUV

DCR of DarkSide-20k SiPMs

 $DCR_{SiPM} = 2 \times 10^{-3} \text{ Hz/mm}^2 \text{ in LN} (7 \text{ Vov})$

DCR_{Tile} = 5 Hz in LN (7 Vov)

 $DCR_{Quad.} = 20 \text{ Hz in LN} (7 \text{ Vov})$

Parameter	7 V of OV	9 V of OV
Internal Cross Talk probability at 77 K	< 33 %	< 50 %
Dark noise rate at 77 K	$< 0.01 {\rm Hz/mm^2}$	$< 0.1 \ \mathrm{Hz/mm^2}$
Afterpulse probability at 77 K [within 5μ s]	- '	$< 10^{'}\%$
PDE at 420 nm at 77 K	-	>40 %
Breakdown Voltage at 77 K (SPE charge)	$26.8\pm0.2~\mathrm{V}$	
Breakdown Voltage at 77 K (SPE amplitude)	27.5 ± 0.2 V	
Single Cell Capacitance (from SPE charge)	$62.5\pm2.5~\mathrm{fF}$	

TABLE 43. Summary of the SiPM Requirements for the Darkside-20k SiPMs. SPE stands for Single Photon Electron.

Dark Noise (DN) rate normalized by the SiPM photon sensitive area as a function of the applied over voltage. TRIUMF data is labeled as #1 while LNGS, INFN PISA and FBK data are labeled as #2, #3, and #4 respectively, when available. From DarkSide-20k TDR (Fig. 14)

PDU: impact on sensitivity

- Impact of PDU performance on PSD \rightarrow effect on sensitivity
- DiCT influence on sensitivity can be reduced with a **hit-based reconstruction** for S1 (instead of charge integration)

- Non-negligeable impact on sensitivity:
 - PDE, After Pulsing
- Negligible impact:
 - Dark Count Rate (DCR), Direct Cross Talk (DiCT)

Parameter	Value	Sensitivity at 100 GeV/c^2
		$[\mathrm{cm}^2]$
PDE	40% at 6 VoV (C_e =0.200)	2.06e-48
PDE	42% at 7 VoV (C_e =0.210)	2.00e-48
PDE	45% at 9 VoV ($C_e=0.225$)	1.94e-48
DCR	$2 \times 10^{-5} \text{ ns}^{-1} \text{ at } 6 \text{ VoV}$	2.00e-48
DCR	$4 \times 10^{-5} \text{ ns}^{-1}$	2.01e-48
DCR	$6{ imes}10^{-5}~{ m ns}^{-1}$	2.01e-48
DiCT	25% at 6 VoV	2.00e-48
DiCT	35% at 8 VoV	2.02e-48
DiCT	45% NA	2.01e-48
AP	5% at 6 VoV	2.00e-48
AP	10% at 9 VoV	2.02e-48
AP	15% NA	2.05e-48
AP	15% NA	2.05e-48

Hit based S1 Reconstruction The Analysis ROI for WIMPs has S1 ~ 500 PE

This result in occupancy for a single channel << 1 PE in 1 us time – we do not lose information.

Fig. 17 Number of Additional Prompt Avalanches (APAs) measured at 77 K as a function of the over voltage.

$$\mathrm{N}_{\mathrm{APA}} = rac{\langle Q_h
angle}{\mu_P} - rac{\langle Q_h
angle}{\mu_P}$$

PDU: Breakdown voltage and signal shape

IV Curves

SiPM bias is different than PDU bias as the voltage is partitioned on four SiPMs

 V_{BD} (77 K) = 27 V

Typical waveform Acquired with CAEN VX2740

Black: Unfiltered single PE
waveform
Red: 50 Sample MA Filter
Obtained with external triggering
in correspondance with fast
pulsed laser

Waveform Template To be used in matched filter

 $V(t) = A \left(e^{-\frac{t-t_0}{\tau_L + \tau_R}} - e^{-\frac{t-t_0}{\tau_R}} \right) \Theta(t - t_0)$

```
1 PE Ampl. = 13 mV
Descent time = 350 ns
```

PDU: Gain

Left: Measurement from PDU Right: Measurement from Single SiPM

G = 2.5e6 @ 7 V O.V.

Correlated Avalanches in SiPMs

Fig. 7. Primary pulses (PP) with different types of correlated pulses such as prompt CT (CT-P), afterpulse (AP) and delayed CT (CT-D).

Fig. 2. Two different types of crosstalk: prompt (CT-P) and delayed (CT-D).

Correlated avalanches:

- After Pulsing (AP)
- Direct Cross Talk (DiCT)
- Delayed Cross Talk (DeCT)
- External Cross Talk (exCT)

DarkSide-20k Sensitivity Projections

Upper limits for a 100 GeV/c² WIMP (90% C.L.) at 100 t.y:

$$\sigma_{100t.y} = 2.0 \times 10^{-48} \text{ cm}^2$$

First measurement of the neutrino "fog" for n > 1.5

~3 neutrinos in 200 ton.y

PDU: Laser Calibration and SPE

Performance Study in LN2

- Varying overvoltage
- Long term testing

