Digital SiPIVI for Dual-readout calorimetry

R. Santoro on behalf of the HiDRa collaboration

Università dell'Insubria and INFN – Milano

European Strategy for Particle Physics Update (2026)

- The new update of the ESPPU is on us.
- National processes already in full swing. ECFA has published guidelines to provide national input.
 - ... and let me remind you of the INFN workshop at Bicocca.
- The integrated FCC programme is the baseline option.

A comprehensive discussion in recent workshop at cern: <u>The 8th FCC Physics workshop</u>

- Stage 1: FCC-ee (Z, H, WW, *tī*) high-precision exploration of the EW sector of the Standard Model, flavour physics, feebly coupled BSM physics.
- Stage 2: FCC-hh (pp @ 100 TeV) exploration of the energy frontier.
- Synergic programme starting a few years after the completion of the high-priority HL-LHC physics.

FCC detectors

IDEA (Innovative Detector for e+e-Accelerators)

2 T thin solenoid within calo Si vertex detector Tracking with ultra light drift chamber Dual Readout Calorimeter + pre-shower MPGD (µRwell) based Muon detector

CLD (CLIC-like Detector)

2 T solenoid outside calo Full silicon tracker SiW high-granularity EM Calo Sci-steel high-granularity HAD Calo **RPC-based Muon detector**

ALLEGRO - A Noble-Liquid Ecal based

2 T solenoid outside calo Tracking with ultra light drift chamber + Si Wrapper (improved tracking + timing) LAr EM Cało + Sci-steel HAD Calo

DR Fiber Calo Coil **DR Crystal Calo** Silicon Wrapper **Drift Chamber** Vertex Detector 2.0 Target jet-jet mass resolution $\frac{\sigma}{r}$ = 0.1 Arbitrary units W boson 0 Z boson H boson 0.08 0.06 0.04 0.02 70 80 90 100 110 120 130 140 150

Beam pipe: $R \approx 1.0$ cm

Highly transparent tracking

- Si pixel vertex detector (monolithic technology)
- Drift Chamber
- Si wrappers (strips)
- Dual-readout crystal ecal: $\approx 22 X_0$
- Thin superconducting solenoid: 3 T

Dual-readout calorimetry 2 m / 7 λ_{int}

- Muon chambers
 - μ -RWELL in return yoke

IDEA: detector concept for FCC-ee

Dual-Readout: the principle

- Non compensating calorimeter (h/e<1): has a different response to electromagnetic (fem) and hadronic component (1-fem)
- The fem is energy dependent: it induces a nonlinear calorimetric response to hadrons and large fluctuations

Dual-Readout: the principle

- Non compensating calorimeter (h/e<1): has a different response to electromagnetic (fem) and hadronic component (1-fem)
- The fem is energy dependent: it induces a nonlinear calorimetric response to hadrons and large fluctuations
- By reading two calorimetric signals (S and C) with different h/e, the fem can be measured event by event and the compensation can be achieved off-line

$$E_{S} = E\left(f_{em} + \left(\frac{h}{e}\right)_{S}(1 - f_{em})\right)$$

$$E_{C} = E\left(f_{em} + \left(\frac{h}{e}\right)_{C}(1 - f_{em})\right)$$

$$E = \frac{\left(E_{S} - \chi E_{C}\right)}{1 - \chi}$$

$$\chi = \frac{1 - \left(\frac{h}{e}\right)_{S}}{1 - \left(\frac{h}{e}\right)_{C}}$$

$$\chi = \frac{1 - \left(\frac{h}{e}\right)_{S}}{1 - \left(\frac{h}{e}\right)_{C}}$$

$$\chi = \frac{1 - \left(\frac{h}{e}\right)_{S}}{1 - \left(\frac{h}{e}\right)_{C}}$$

$$It is detector dependent: it can be measured on beam tests$$

INFN ASPIDES kick-off me

ASPIDES kick-off meeting, 30/01/2025 —

S. Lee et al, RevModPhys, 90, 025002 (2018) DOI: 10.1103/RevModPhys.90.025002

R. Santoro

ASPIDES kick-off meeting, 30/01/2025

S. Lee et al, RevModPhys, 90, 025002 (2018) DOI: 10.1103/RevModPhys.90.025002

8

HiDRa project (supported by INFN) aims to identify a scalable and cost-effective solution to build a dual-readout calorimeter for IDEA.

9m

Dual-Readout in IDEA

Almost 75 millions of 2 mm outer

In each tube there is a 1 mm diameter

diameter stainless steel tubes

□ Signals from 8-SiPMs grouped to

fibre connected to a SiPM

HiDRa: High-Resolution Highly Granular Dual-Readout Demonstrator

64 x 16 stainless steel capillaries, 2 mm outer diameter, equipped with scintillating and clear fibres (alternated in rows) to apply the dual-readout method

The HiDRa prototype

Designed to be scalable and large enough to measure the hadronic performances

Real Property in the second
desident and a second statements of the second

The highly granular modules

Two central modules read out with 10k SiPMs (one per fibre)

Challenging integration requiring a precise assembly procedure and the use of compact components (i.e. SiPMs, services and mechanical) to fit in the back of the calorimeter

Integration of highly granular modules

SiPM with 10 μm pitch for scintillating and 15 μm pitch for Cherenkov light

Customised package with 8 SiPMs, 2 mm spaced (S16676-15 / S16676-10)

Analogue signals from 8 SiPMs connected in parallel

SiPM parameters (Hamamatsu datasheet)

Parameter	S16676-15(ES1)	S16676-10(ES1)
Effective photosensitive area (mm2)	1 x 1	1 x 1
Pixel pitch (mu)	15	10
Number of pixels	3443	7772
Recommended operating voltage (Vop)	+4 V	+5 V
PDE at the Vop (%)	32	18
Direct cross talk at the Vop (%)	<1	<1
Dark count rate (kHz)	60 (200 max)	60 (200 max)
Gain (10 ⁵)	3.6	1.8

R. Santoro

SiPIM main parameters

The EM-size prototype tested on beam (2021 and 2023)

- □ EM-size prototype (10x10x100 cm³)
 - 9 modules made of 16 x 20 capillaries (160 C and 160 Sc)
 - Brass capillaries: 2 mm outer diameter and 1.1 mm inner diameter
- EM-size prototype readout
 - Each capillary of the central module is equipped with its own SiPM: highly granular readout
 - 8 surrounding modules equipped with PMTs (each module will use 1 PMT for C and 1 PMT for Sc fibres)

M6 M7 M8

 $M4 M \emptyset M 5$

M1 M2 M3

Readout: baseline solution

FERS-system

- FERS unit can be used in standalone or connected to the system
- Up to 16 FERS units can be connected in daisy chain (FERSnet)
- The FERSnet communicates to the concentrator board DT5215 via TDlink (6.25 Gbit/s) optical link
- A DT5215 houses 8 high-speed optical links (TDLink) to read out up to 8192 channels (SiPMs)
- The DT5215 has an embedded ARM processor (Quad Core) running Linux for data processing / data compréssion
- The connection to the host PC is performed over a 10 Gbit ethernet
- Further scalability can be reached synchronizing more concentrator boards

Readout: baseline solution

- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)

CITIROC 1A

Block diagram

https://www.weeroc.com/my-weeroc/downloadcenter/citiroc-1a/16-citiroc1a-datasheet-v2-5/file

Specification

Detector Read-Out		SiPM, SiPM array						
Number of Channels		32						
Signal Polarity		Positive						
Sensitivity		Trigger on 1/3 of photo-electron						
Timing Resolution		Better than 100 ps RMS on single photo-electron						
Dynamic Range		0-400 pC i.e. 2500 photo-electrons @ 10 ⁶ SIPM gain						
Packaging & Dimension		TQFP160-TFBGA353						
Power Consumption		225mW - Supply voltage: 3.3V						
	Inputs	3	2 voltage inputs with independent SiPM HV adjustments					
Ŵ		Outputs		32 digital outputs (for timing) 2 multiplexed charge output, 1 multiplexed hit register and 2 trigger outputs				
				I F F	nternal Program. Features	32 HV adjustment for SiPM (32x8bits), Trigger Threshold Adjustment, channel by channel gain tuning, 32 Trigger Masks, Trigger Latch, internal temperature sensor		

We need single photons resolution and large dynamic range

${\tt CitiroclA-block-schema}$

We need single photons resolution and large dynamic range

CitiroclA-block-schema

HG equalisation

Dpp: used to convert ADC in Ph-e (monitored in all runs and for all SiPMs)

Pedestal width: used to measure the noise contribution to the energy resolution

We need single photons resolution and large dynamic range

${\tt CitiroclA-block-schema}$

LG equalisation

Slope of the correlation plot provides the ADC to Ph-e conversion factor

Pedestal width measured selecting noise events in the HG

Pretty good linearity but never forget that SiPMs are digital sensors: the same cell cannot be fired twice

More on SiPIM linearity

Parameter	S14160-1315PS
Effective photosensitive area (mm2)	1.3 x 1.3
Pixel pitch (mu)	15
Number of pixels	7284

$$N_{\rm fired} = N_{\rm cells} \times \left[1 - \exp\left[-\frac{N_{\rm photons} \times {\rm PDE}}{N_{\rm cells}}\right]\right]$$

With 700 Ph-e (10% occupancy) in a single fibre -> 5% correction to the signal

Improved linearity after the correction

DR High granularity modules have demanding and sometimes competing requirements:

- SiPMs with:
 - High efficiency with single photon resolution
 - wide dynamic-range at fixed sensitive area to avoid non-linearity effects
- Readout coping with the SiPM dynamic range, preserving the single photon resolution
- Time resolution < 100ps to add longitudinal segmentation</p>
- Signal grouping from SiPMs to reduce the number of channels to be read-out, knowing that:
 - It reduces the multi-ph quality and the timing performance
 - It requires that all SiPMs in the group must operate in linear regime: no-way to correct for non-linearity (they sampling different regions of the shower profile and are not uniformly illuminated)

Are dSiPMs a valid option to be considered?

SiPMs: analogue signal proportional to number of fired cells, readout performed externally

Digital (CMOS) SiPMs: readout functionalities implemented in the sensor substrate (e.g. binary counters, SPAD masking, TDCs ...)

M. Perenzoni et al. 2017 – IEEE JSSC

- SPAD array in CMOS technologies may offer the following benefits:
 - Front-end can be optimised to preserve signal integrity (especially useful for timing)
 - Easier linearisation and calibration direct digital output vs digital/analog (including noise + non uniformity)/digital conversion
 - The monolithic structure simplifies the assembly for large area detectors
 - Costs can be kept relatively low if the design is based on standard process

dSiPIM specifications

Requirements	Dual readout calorimetry
SiPM Unit area (mm²)	lxl
Micro-cell pitch (um)	15-20
Macro-pixel area (μ m²)	500x500
PDE (%)	>20
DCR (kHz)	<100 kHz/mm ²
AP (%)	<1
Xtalk (%)	few
Trigger	external, self
Output data: light intensity	no. of fired cells in 1 or 2 time windows (10's of ns long)
Output data: time	time of arrival of the first photon in the window, possibly of the last photon (TOT)
Time resolution (ps)	<100
Module size and form factor	strip with 8 units (1mm x 16 mm), pitch of 2 mm
Connection	BGA

Demonstrator for DR calorimetry

- Single building block of 8 dSiPM $(1x1mm^2)$ and processing electronics in the common CMOS substrate
 - SPADs with minimal electronic circuits -> high fill-factor
 - The inter-dSiPM spacing is used to accommodate the processing electronics
 - Each mm² dSiPM will be subdivided in sectors, each served by dedicated mixed analogue and digital electronics to improve timing performance

Demonstrator for DR calorimetry

- Single building block of 8 dSiPM (1x1mm²) and processing electronics in the common CMOS substrate
 - SPADs with minimal electronic circuits -> high fill-factor
 - The inter-dSiPM spacing is used to accommodate the processing electronics
 - Each mm² dSiPM will be subdivided in sectors, each served by dedicated mixed analogue and digital electronics to improve timing performance
- Processing electronics:
 - Fully digital output obtained through a completely digital processing chain (or, mixed analogue and digital approach, through current or charge integration and A/D conversion)
 - Time of arrival of the first bunch of photons and bunch duration with better than 100 ps resolution
 - Possibility of individual micro-cell enabling
 - Threshold adjustment capabilities for noise rejection
 - Asynchronous counting over a more than three decade wide dynamic range of simultaneously firing micro-cells (order of a few thousands, 15-20 μm pitch)

- The HiDRa collaboration is building a dual readout calorimeter large enough to contain hadronic showers, using a scalable and cost-effective solution for the next generation of detector concept (IDEA @ FCC-ee)
- The highly granular modules, equipped with SiPMs, set challenging requirements in terms of readout, calibration technique and linearity correction
- Although SiPMs are the baseline solution, monolithic CMOS SPAD array (dSiPM) may have a strong impact for this detector R&D
- If ASPIDES will succeed in its goal, we will have a demonstrator of interest to a broad community (i.e. calorimetry for high energy physics)

Integration and signal integrity

- 2 High resolution TDCs (LSB = 50 ps)
- Optical link interface for readout (6.25 Gbit/s)

CitiroclA-block-schema

Customised package with 8 SiPMs, 2 mm spaced (S16676-15 / S16676-10)

SiPM with 10 μm pitch for scintillating and 15 μm putch for Cherenkov light (better PDE)

15 μm pitch SiPM operated at \approx + 6 V Over-Voltage

