

UNIVERSIDAD DE GRANADA

The SBND Experiment at the Fermilab SBN program

MidTerm Review of SENSE (HORIZON-MSCA-2021-SE-01, GA 101081478)

Diego Garcia-Gamez

The University of Granada

Short-Baseline Neutrino Program at Fermilab

Three detectors of the same technology along the same neutrino beam

MicroBooNE

SBN Far Detector

MicroBooNE (2015 - 2021)

85 tons active volume L = 470 m

SBND (2024 - now)

SBN Near Detector

112 tons active volume L = 110 mNear detector

SBND in the SBN Program at Fermilab

- The goal of the SBN program is to search for sterile neutrinos through oscillations:
 - Aims to resolve the electron-like excess seen by LSND and **MiniBooNE**
- SBND is the Near Detector of the SBN program
- Its location (110 m) near the neutrino source and relatively large mass (112 ton active volume) \Rightarrow SBND will have the world's highest statistics in ν_{μ} -Ar (2M events/year) and ν_{e} -Ar (15k events/year) interactions
 - key to mitigating large neutrino flux and cross-section uncertainties

Liquid Argon Time Projection Chamber (LArTPC)

- - in the final state

Two complementary signals:

- Ionization electrons: drifted through an electric field and detected at the charge readout plane
- Scintillation photons: detected by the photon detection system

• LAr TPC detectors provide full 3D imaging, precise calorimetric energy reconstruction down to very low threshold, efficient particle identification and background rejection

• Individual neutrino events can be categorized in terms of exclusive topologies observed

The SBND detector

2 Time Projection Chambers (TPCs) separated by a central cathode:

- TPC dimensions: 2m (drift) x 4m (height) x 5m (length)
- Constant Electric Field in the Active Volumes
- Charge and Light detected in the Anode planes

Cryostat surrounded by a cosmic ray tagger system for background rejection

SBND TPC (left) & PDS (right)

SBND Cosmic Ray Tagger (CRT) system

The SBND detector is surrounded by Cosmic Ray Taggers panels:

- Almost 4π coverage \Rightarrow Very important for detectors located at surface (like the SBN ones)
- Two top CRT panels \Rightarrow Telescope

Primary goal is to provide precision tagging of particles entering / crossing / exiting the TPC

SBND Timeline

September 2022 **Detector assembly completed**

December 2022 **Detector transported to ND**

April 2023 **Detector lowered to cryostat**

March 2024: LAr filling completed

July 2024 **TPC high voltage ramped up**

First events: Booster Neutrino Beam

TPC high voltage operating stably since July 3rd We are collecting **neutrino candidate** events in the detector:

Beam

TPC Collection Plane Zoomed-In

First events: Crossing Muons

Calibration and commissioning samples during beam downtime

Crossing tracks observed in the TPC during crossing-muon trigger runs

Tick

Time

Wire Number

Physics @ SBND

Measure the unoscillated fluxes: Enable precise sterile neutrino searches

RUN 14445, EVENT 120 July 04, 2024

Study neutrino-nucleus interactions: high statistics will allow a wide variety of neutrino interaction measurements \Rightarrow inputs for theory, generators, and future experiments (like DUNE)

Beyond the Standard Model physics: BSM particles may originate from the BNB, from charged and neutral mesons, SM neutrinos, and proton bremsstrahlung. Distinctive topologies can also be exploited

Conclusions

- **SBND** has collected first data and is getting ready for first physics analysis
 - All sub-systems of SBND installed and taking data
- With the highest statistics of any neutrino LAr experiment to date, SBND will provide opportunity for measuring neutrino crosssections with unprecedented precision and potential **BSM** physics

BackUp