

The Short Baseline Neutrino (SBN) Program and the Icarus experiment at Fermilab

Alice Campani on behalf of the ICARUS collaboration Università di Genova, INFN Sezione di Genova

MidTerme review of SENSE

Istituto Nazionale di Fisica Nucleare

NEUTRINOS & THE STANDARD MODEL OF PARTICLE PHYSICS

- Experimental observations indicate the existence of three neutrino families: ν_e, ν_μ, ν_τ
 - Interacting only via weak interaction: small interaction probability \rightarrow difficult to observe In the Standard Model of particle physics they are described as mass-less particles The phenomenon of **neutrino flavor oscillations** indicates they must have a mass

 - ullet

The oscillation probability depends on

- square of the difference between neutrino masses Δm^2
- source-detector distance L
- \searrow neutrino energy $E_{
 u}$ and neutrino mixing angle heta
- We study both channels: *appearance* of new flavors and the **disappearance** of the source ν flavor

EXPERIMENTAL ANOMALIES AND STERILE NEUTRINOS

Results point towards a new sterile neutrino flavor at $\Delta m^2 \sim 1 \ eV^2$ driving short-distance oscillations

EXPERIMENTAL ANOMALIES AND STERILE NEUTRINOS

Results from \neq experiments:

- different technologies
- different detection techniques¹⁰
- different energy ranges

How to solve this?

- Measure **both channels** in the same experiment
- Build experiments with same technology, detection technique and exposed to the same neutrino source \rightarrow SBN

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

The global analysis of oscillation data highlights a tension between appearance and disappearance results

THE SHORT-BASELINE NEUTRINO PROGRAM AT FNAL

- Same technology: Liquid Argon Time Projection Chamber (LArTPC)
- Same source: Booster Neutrino Beam (BNB) sampled at ≠ distances
 - Near detector (SBND, 110 m) to measure neutrinos before they oscillate precise information on the initial composition and energy of the beam
 - Far (ICARUS, 600 m) to have non null <u>oscillation probability</u>
- **Main goal:** search for sterile neutrinos & solve the sterile neutrino puzzle

THE SHORT-BASELINE NEUTRINO PROGRAM

LIQUID ARGONTIME PROJECTION CHAMBERS

•

From an idea of Carlo Rubbia (1977), LArTPCs are ideal detectors for neutrino physics: they allow to have simultaneously an energetic reconstruction of the events and a 3D image of neutrino interactions Why liquid Argon?

Charged particles generate excited argon molecules that in turn emit **light** (~40000 γ /MeV at λ =128 nm) in a short time ($\lesssim 2 \ \mu$ s): we use this signal to identify time of neutrino interactions (**trigger** system)

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

Ionization

Charged particles ionize argon: 42000 e-/MeV 500 V/cm electric field drifts the e^{-} (~1.6 m in 1 ms) towards the anode where wire planes are used to generate **2D** images of charged particle tracks

THE ICARUS EXPERIMENT

- ICARUS T600: the first large scale LArTPC ever built with 760 tons of pure LAr, 470 tons active mass lacksquare
- 2 cryostats (3.6 x 3.9 x 19.6 m³) with 2 TPCs each and central cathode
- **3 wire planes** at different orientation (54000 wires, 3 mm pitch) to measure the ionization signal ullet
- **360** photomultipliers (**PMTs**) behind the wires measure scintillation light providing trigger (\sim 300 ps resolution)
- 2.85 m concrete overburden to suppress and external Cosmic Ray Tagger (CRT) to tag cosmic rays background •
- After 3 yr physics run at LNGS and intensive overhaul at CERN ICARUS detector was moved to Fermilab \bullet

DETECTOR OPERATIONS AND DATA ACQUISITION

CRT (overburden) installation completed in 2021 (2022): data taking started in June 2022 \bullet

Collected statistics in 3 physics runs [Proton on Target (PoT)]

Run	Duration	BNB (FHC) [*] positive focusing	NuMI (FHC) [*] positive focusing	NuMI (RHC) [*] negative focusing
	Jun-July '22	0.41 1020	0.68 1020	_
2	Dec '22-July '23	2.05 1020	2.74 1020	_
3	Mar-July '24 [**]	1.36 1020		2.82 1020
Total	/	3.82 I 0 ²⁰	3.42 I 0 ²⁰	2.82 1020

[*] FHC = Forward Horn Current (ν beam mode), RHC = Reverse Horn Current ($\bar{\nu}$ beam mode) [**] Reduced duration \rightarrow exposure due to prolonged accelerator shutdown Eur. Phys. J. C 83:467 (2023)

- \bullet
- **Impurities** in LAr ~40 p.p.t. O_2 equivalent \rightarrow ~full track detection efficiency in the 1.5 m drift ullet
- ullet

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

Three physics runs completed so far - Run 4 started in October 2024 and is currently ongoing

Steady data taking with excellent stability at BNB rates > 4Hz, >90% efficiency with E_{dep} >200 MeV

Trigger: light registered simultaneously by 4 PMT pairs in a 6 m longitudinal slice in coincidence with beam

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

DETECTOR PERFORMANCE

DETECTOR CALIBRATION AND MODELLING

- Our detector response calibration is extracted on cosmic muons and protons from ν interactions and the energy reconstruction is validated comparing calorimetric and range-based reconstructions
- We use the energy loss per unit length (dE/dx) vs residual range to identify different particles

Average signal response for a track angular bin

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

Accurate modeling of the signal from TPC wires and new angular dependent recombination model arXiv: 2407.12969

NEUTRINO CANDIDATES EVENT RECONSTRUCTION

Raw data

- Two reconstruction frameworks to characterize neutrino events:
 - Pandora, pattern recognition software widely used in LArTPCs
 - SPINE, entirely based on Machine Learning techiques (<u>arxiv</u>)
- Continuous effort to improve reconstruction and data/simulations agreement
- Validation using the **visual scanning** of collected events
 - Interaction point (vertex) reconstruction
 - Agreement between light and charge signal barycenters along the longitudinal (beam) direction is within 1 m

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

BNB ν_{μ} CC candidate

THE ICARUS PHYSICS PROGRAM

- SBN joint (SBND+ICARUS) physics program for the sterile neutrino search with the BNB ν_{μ} , ν_{e} events
- Before the joint oscillation analysis with SBND, ICARUS is now focusing on a standalone physics program:
 - Analysis of the ν_{μ} disappearance channel with BNB, to be complemented with ν_{e} disappearance • from NuMI beam data, being 6 degrees off-axis it has enriched ν_{ρ} composition The goal is to verify the **Neutrino-4 experiment claim**
 - Study of ν_{μ} , ν_{e} interactions from the NuMI beam to measure ν -Ar cross sections and optimize our • event reconstruction in the energy range that **DUNE** will explore
 - Search for evidence of physics **Beyond Standard Model** in other channels using NuMI data \bullet A channel was already explored (analysis finalized): dark matter decay in a di-muon state

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

u_{μ} DISAPPEARANCE ANALYSIS WITH BNB BEAM DATA

- Selection of fully contained ν_{μ} charged current events with 1 μ +N protons in the final state Event <u>kinematic</u> extracted from <u>range</u> measurements
 - (I) Light signal within 1.6 µs beam spill in coincidence with reconstructed TPC tracks and no CRT signal
 - (II) A muon with L_{track} >50 cm, N > 1 protons with $E_K > 50 \text{ MeV} (L_{track} > 2.3 \text{ cm})$
 - (III) No additional pion/photon
- Residual cosmic background <1%
- We included systematic uncertainties on our measurement due to:
 - neutrino flux
 - models of neutrino interactions (cross sections)
 - detector effects

(signal collection/reconstruction efficiencies, ...)

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

Should cancel out with a joint SBN analysis

Conservative estimates extracted while improving our simulations

Momentum in the transver plane

ν_{μ} DISAPPEARANCE ANALYSIS: PRELIMINARY RESULTS

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

10% of the data analysed (\sim 20 x data available) showing data/MC agreement within systematic effects

- Pandora-based reconstruction selection ~50% signal efficiency, 80% signal purity **I.93 x 10¹⁹** Proton on Target (PoT) **34000 events** (Run I - 3)
- **SPINE**-based reconstruction selection ~75% signal efficiency, 80% purity 1.92 x 10¹⁹ PoT **47000 events** (Run 1-3)

We are ready for the next analysis steps:

- enlarge the control sample to confirm the robustness of the analysis
- proceed to full data unblinding and oscillation fit

CROSS SECTION MEASUREMENTS WITH NUMI BEAM DATA

- Huge statistics to measure ν_{μ} , ν_{e} cross sections for different types of interactions • With 6 x 10²⁰ PoT: **332 000** ν_{μ} , **17000** ν_{e} - 3.42 x 10²⁰ PoT are already available for the present analysis
- First oscillation peak & relevant phase space for DUNE is covered by NuMI energy spectrum @ ICARUS •

- First analysis: signal events with I muon, N>1 protons and no π/γ in the final state
- Control sample and systematics analysed
- 15% of data analysed
- Ready to enlarge the statistics

BEYOND STANDARD MODEL SEARCHES

- First search for a particle beyond the Standard Model decaying into a **di-muon** state **completed**
 - Signal candidates: events with 2 stopping µ-like particles fully contained in the detector
 - Signal peak expected at small angles with respect to NUMI beam ($\theta_{\rm NuMI} < 5^\circ)$
 - All systematics included and data unblinded

MidTerme Review of SENSE - WPI, The Short Baseline Neutrino (SBN) Program and the ICARUS experiment at Fermilab

CONCLUSIONS AND NEXT STEPS

- ICARUS is **running stably** and acquiring physics runs since summer 2022, • esposed to both on-axis BNB (ν -mode) and off-axis NuMI (ν - and $\bar{\nu}$ -mode) neutrino beams
- Accurate detector calibration and response modelling now fully embedded in our simulations ullet
- Waiting and also in view of the upcoming joint-SBN analyses, several **single detector studies**: \bullet
 - ν_{μ} disappearance channel with BNB beam \rightarrow control sample will be enlarged to complete validation •
 - Recent effort to improve ν_e reconstruction(s) in view of a ν_e disappearance analysis with NuMI ullet
 - ν -Ar cross section measurements with NuMI beam, first selection includes 1µNp0 π events ullet
 - Rich program for the search for physics beyond the Standard Model with NuMI beam data ullet
 - Search for decay in a *di-muon* final state completed no evidence of a signal observed •
- Interesting results are foreseen soon while we continue our effort to improve event simulation and \bullet reconstruction

THANKS FOR YOUR ATTENTION

