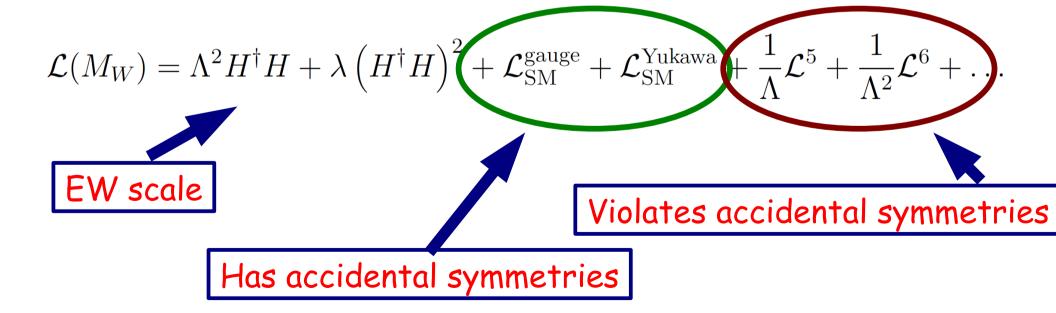
FLAVOUR PHYSICS AND THE ROLE OF KAONS


Luca Silvestrini INFN, Sez. di Roma

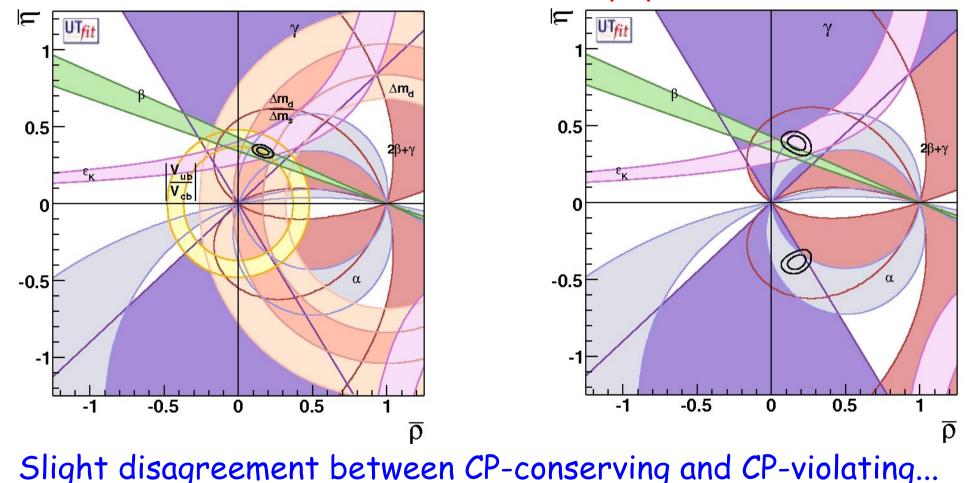
- Introduction
- Bottom-up approach: NP in $\Delta F\text{=}2$ processes
- Top-down approach: SUSY models
- Conclusions

Thanks to M. Pierini

INTRODUCTION

The Standard Model works beautifully up to a few hundred GeV's, but it must be an effective theory valid up to a scale $\Lambda \leq M_{Planck}$:

INTRODUCTION - II


- Flavour symmetry breaking by Yukawa couplings: four fundamental parameters (λ , A, ρ , η) determine all FCNC and CP violating processes
- FCNC and CPV are absent at the tree level and receive finite and calculable loop corrections in the SM (GIM mechanism)
- Operators with D>4 contribute to FCNC & CPV processes and modify the relations and predictions of the SM

INTRODUCTION - III

- Bottom-up approach:
 - add all possible D>4 operators in a given sector $(\Delta F=2, \Delta F=1, LFV,...)$ and constrain their coefficients
 - obtain general info on NP flavour structure and constraints on the scale of NP
- Top-down approach:
 - assume a given NP flavour structure (MFV, NMFV, split fermions, U(1), alignment, SU(2), SU(3), A_4 ,...)
 - determine present bounds on NP parameter space
 - investigate correlations and identify possible signals

BOTTOM-UP APPROACH: $\Delta F=2$

End of SM parameter determination era, begin of precision test era: redundant determination of the triangle with new measurements from B-factories and Tevatron and test of new physics.

Kaon 2007, Frascati

NP IN $\Delta F=2$

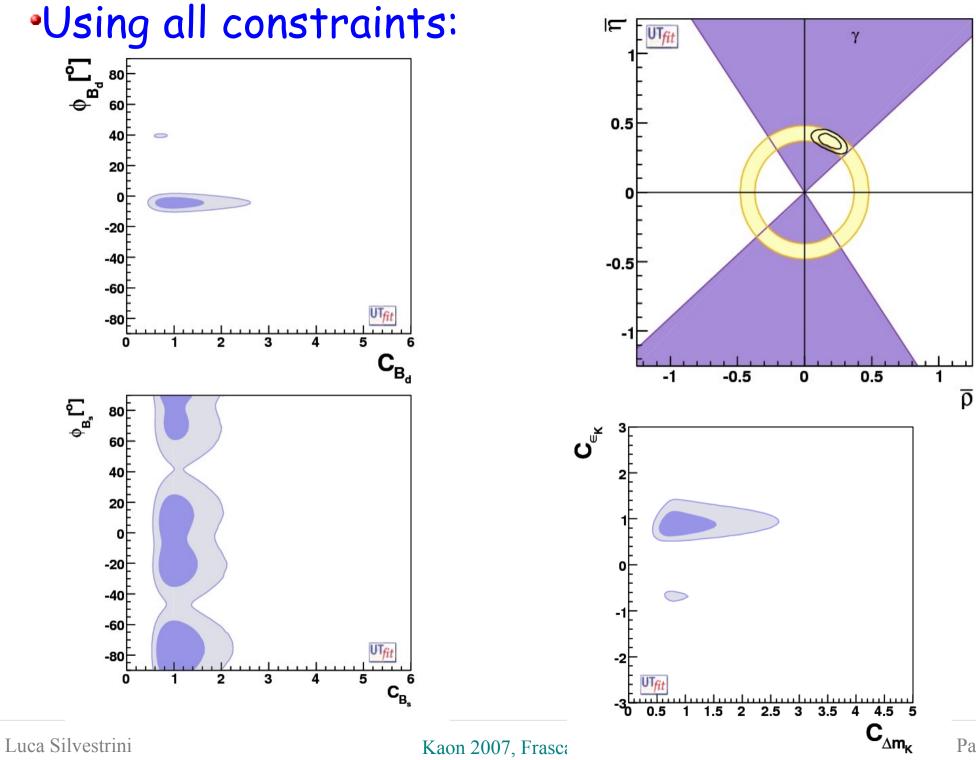
Utfit Coll., in progress

• Strategy for $\Delta F=2$ processes:

1. Determine allowed ranges for NP contributions

- 2. Determine allowed ranges for coefficients of higher-dimensional operators
- 3. Compute lower bound on NP scale, test NP models

THE GENERALIZED UTA


• Consider ratios of (SM+NP)/SM amplitudes

$$C_{B_q} e^{2i\phi_{B_q}} = \frac{\langle B_q | H_{\text{eff}}^{\text{full}} | \bar{B}_q \rangle}{\langle B_q | H_{\text{eff}}^{\text{SM}} | \bar{B}_q \rangle} = \frac{A_q^{\text{SM}} e^{2i\phi_q^{\text{SM}}} + A_q^{\text{NP}} e^{2i(\phi_q^{\text{SM}} + \phi_q^{\text{NP}})}}{A_q^{\text{SM}} e^{2i\phi_q^{\text{SM}}}}$$
$$C_{\epsilon_K} = \frac{\text{Im}[\langle K^0 | H_{\text{eff}}^{\text{full}} | \bar{K}^0 \rangle]}{\text{Im}[\langle K^0 | H_{\text{eff}}^{\text{SM}} | \bar{K}^0 \rangle]}, \qquad C_{\Delta m_K} = \frac{\text{Re}[\langle K^0 | H_{\text{eff}}^{\text{full}} | \bar{K}^0 \rangle]}{\text{Re}[\langle K^0 | H_{\text{eff}}^{\text{SM}} | \bar{K}^0 \rangle]}$$

- Determine C's and ϕ 's using generalized UT analysis

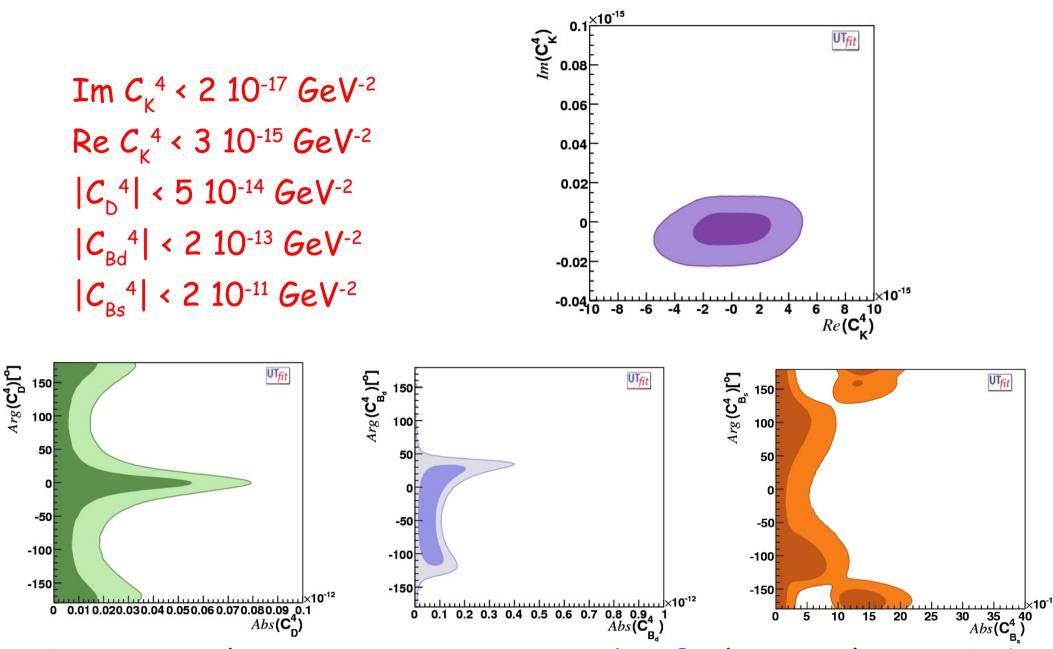
NP parameters & exp constraints

- Angle measurements determine ρ,η and ϕ_{Bd} up to an ambiguity of 180°
- Δm_d , Δm_s , $\varepsilon \& \Delta m_K$ fix C_{Bd} , C_{Bs} , C_{ε} and $C_{\Delta MK}$
- $\Delta \Gamma_{s} / \Gamma_{s}$ and $B_{s} \rightarrow J/\psi \phi$ constrain ϕ_{Bs}
- A_{sL}^{d} and A_{sL}^{s} suppress the "wrong" solution in the $\rho - \eta$ plane and constrain ϕ_{Bs}

Page 9

SUMMARY OF CONSTRAINTS

Parameter	Output	Parameter	Output
C_{B_d}	1.04 ± 0.34	$\phi_{B_d}[^\circ]$	-4.4 ± 2.1
C_{B_s}	1.04 ± 0.29	C_{ϵ_K}	0.87 ± 0.14
$\phi_{B_s}[^\circ]$	-77 ± 16	$\cup -20 \pm 11$	0.09 ± 10
$\overline{ ho}$	0.169 ± 0.051	$\overline{\eta}$	0.391 ± 0.035
$\alpha[^{\circ}]$	88 ± 7	$\beta[^{\circ}]$	25.1 ± 1.9
$\gamma[^\circ]$	67 ± 7	$\mathrm{Im}\lambda_{\mathrm{t}}[10^{-5}]$	15.6 ± 1.3


Determine coefficients of dimension-6 operators: $Q_1^{q_i q_j} = \bar{q}_{iL}^{\alpha} \gamma_{\mu} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} \gamma^{\mu} q_{iL}^{\beta} ,$

 $\mathcal{H}_{\text{eff}}^{K-\bar{K}} = \sum_{i=1}^{5} C_i Q_i^{sd} + \sum_{i=1}^{3} \tilde{C}_i \tilde{Q}_i^{sd}$ $\mathcal{H}_{\mathrm{eff}}^{D-\bar{D}} = \sum^{5} C_{i} Q_{i}^{cu} + \sum^{3}_{i} \tilde{C}_{i} \tilde{Q}_{i}^{cu}$ $\mathcal{H}_{\text{eff}}^{B_q - \bar{B}_q} = \sum^5 C_i Q_i^{bq} + \sum^3 \tilde{C}_i \tilde{Q}_i^{bq}$

- $Q_2^{q_i q_j} = \bar{q}_{iR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{iR}^{\beta} q_{iL}^{\beta} ,$
- $Q_3^{q_i q_j} = \bar{q}_{iR}^{\alpha} q_{iL}^{\beta} \bar{q}_{iR}^{\beta} q_{iL}^{\alpha} ,$
- $Q_4^{q_i q_j} = \bar{q}_{iB}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} q_{iB}^{\beta} ,$

$$Q_5^{q_i q_j} = \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jL}^{\beta} q_{iR}^{\alpha} ,$$

• In the SM, only Q_1 is present. Q_{2-5} are RGenhanced (and chirally-enhanced in K) \Rightarrow NP models w. $C_{2-5} \neq 0$ more constrained

Kaons give the strongest constraints, but B-physics + lattice QCD are necessary to exploit the Kaon constraining power!

Kaon 2007, Frascati

FROM C'S TO THE SCALE OF NP

the NP scale Λ can be defined as Λ

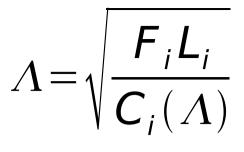
$$= \sqrt{\frac{F_i L_i}{C_i (\Lambda)}}$$

- L loop factor:
 - -tree-level: L=1
 - -loop-mediated: $L=\alpha_{NP}^{2}$ (ex: SM $L=\alpha_{W}^{2}$, SUSY $\alpha_{W,s}^{2}$)
- F flavour factor: depends on flavour structure of NP model

FLAVOUR STRUCTURES OF NP

- \mathcal{L}^{SM}_{gauge} invariant under flavour SU(3)⁵
 - -MFV: broken only by V_{CKM} and m_{+}
 - same correlations as in the SM

Gabrielli, Giudice, NPB433; Buras et al., PLB500; D'Ambrosio et al., NPB 645


Buras et al.; ...

- -MFV @ large tan β : only V_{CKM} and m_t, m_b
 - lose correlations between K and B D'Ambrosio et al., NPB 645; Babu, Kolda; Isidori, Retico;
 - scalar currents enhanced

-NMFV: $V_{L,R}^{U}$, $V_{L,R}^{D}$ ~ V_{CKM}^{U} and $m_{+}^{t}(m_{b}^{U})$ Agashe et al

• additional sources of FV, different chiralities

On the NP scale again:

- Minimal Flavour Violation:
 - small tan β : $F_1 = F_{SM} \sim (V_{tq} V_{tq'}^*)^2$ and $F_{i\neq 1} = 0$
 - large $tan\beta$: additional operators in B_s mixing
- Next-to-Minimal Flavour Violation:
 - $|F_i| \sim F_{SM}$ with arbitrary phases
- Generic flavour structure
 - $|F_i| \sim 1$ with arbitrary phases

Generic Flavour Violation

UTfit collaboration, in preparation **PRELIMINARY**

 $\Lambda > 2 \ 10^5$ TeV (tree-level), $\Lambda > 7 \ 10^3$ TeV (weak loop) From Δm_{κ} :

 $\Lambda > 2 \ 10^4$ TeV (tree-level), $\Lambda > 600$ TeV (weak loop) From D mixing:

 $\Lambda > 4 \ 10^3$ TeV (tree-level), $\Lambda > 150$ TeV (weak loop) From B₄ mixing:

 $\Lambda > 2 \ 10^3$ TeV (tree-level), $\Lambda > 75$ TeV (weak loop) From B_c mixing:

 $\Lambda > 220$ TeV (tree-level), $\Lambda > 7$ TeV (weak loop)

From ε_{ν} :

Next-to-Minimal Flavour Violation

From ε_{κ} :

<u>PRELIMINARY</u>

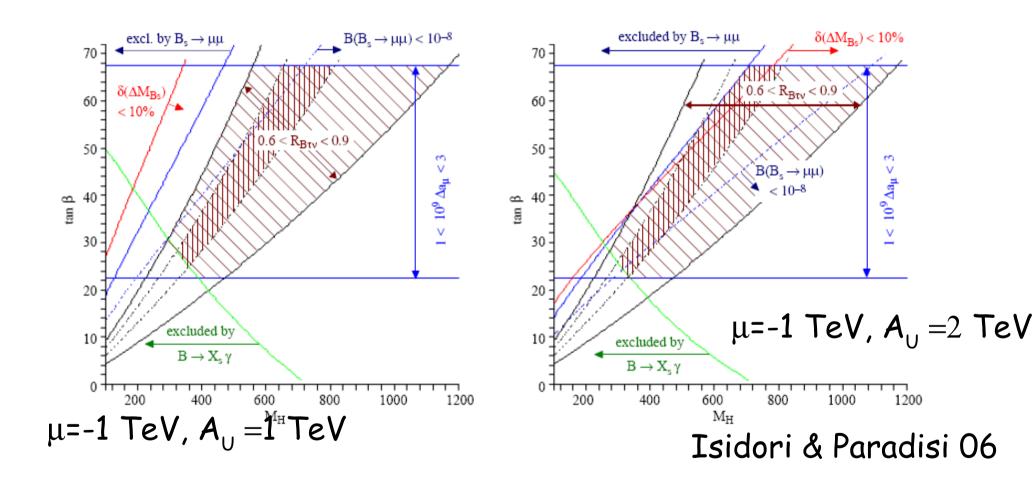
- $\Lambda > 60$ TeV (tree-level), $\Lambda > 2$ TeV (weak loop) From Δm_{μ} :
- $\Lambda > 4$ TeV (tree-level), $\Lambda > 130$ GeV (weak loop) From B_d mixing:
- $\Lambda > 14$ TeV (tree-level), $\Lambda > 460$ GeV (weak loop) From B_s mixing:
- $\Lambda > 8$ TeV (tree-level), $\Lambda > 260$ GeV (weak loop)

Clearly beyond the reach of the LHC for treelevel (warped extra-dim, etc.). Even weakly interacting loop-mediated on the border!!!

Minimal Flavour Violation

- A worst-case scenario for NP searches... For small tan β :
- $\Lambda > 5.5$ TeV (tree-level)
- $\Lambda > 185 \text{ GeV}$ (weak loop)
- For large tan β (from D=6 operators):
- $\Lambda > 5.1$ TeV (tree-level)
- $\Lambda > 170 \text{ GeV}$ (weak loop)
- Still well within the reach of LHC if weak loop...
- Plus interesting phenomenology of Higgs effects

TOP-DOWN APPROACH: $\Delta F=1 PROCESSES$


- Model-independent analyses of $\Delta F\text{=}1$ processes difficult: too many operators
- In specific models, apply $\Delta F=2$ constraints and study possible signals in $\Delta F=1$:
 - MFV models
 - SUSY models (with or without MFV)
 - Non-SUSY models (extra dim, little Higgs)

THE MSSM

- In the MSSM, two classes of contributions to FCNC's:
 - Supersymmetrization of SM contributions $(W \rightarrow \tilde{w}, t \rightarrow \tilde{t}) + H^{\pm}$: also present in MFV
 - pure SUSY contributions: ĝ ĝ: requires new sources of flavour violation in squark mass matrices

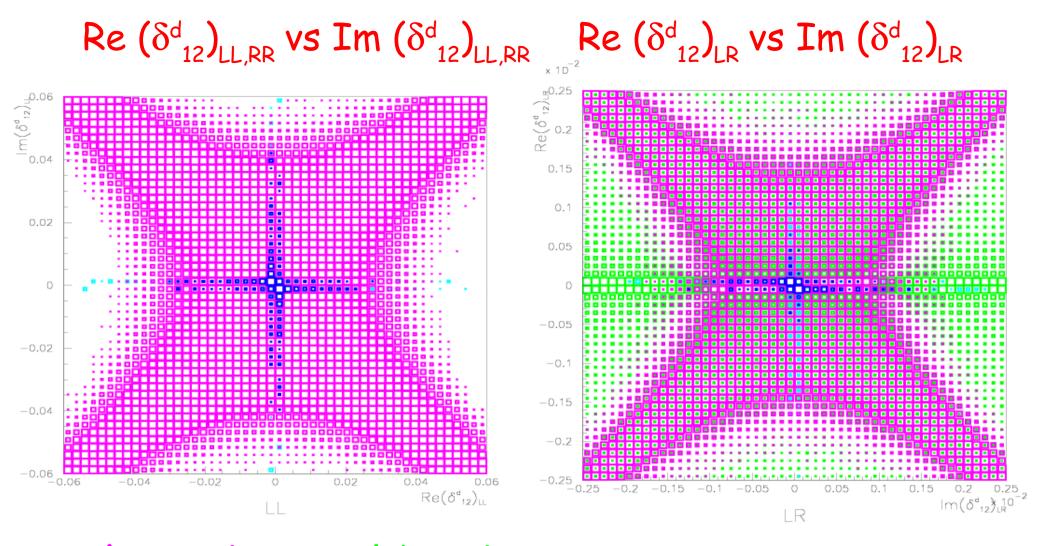
Hall, Kostelecky & Raby; Gabbiani et al.

THE MFV-MSSM @ LARGE tan β

Violations of lepton universality possible if sizable LFV

THE GENERAL MSSM

Ciuchini et al., in progress, Preliminary

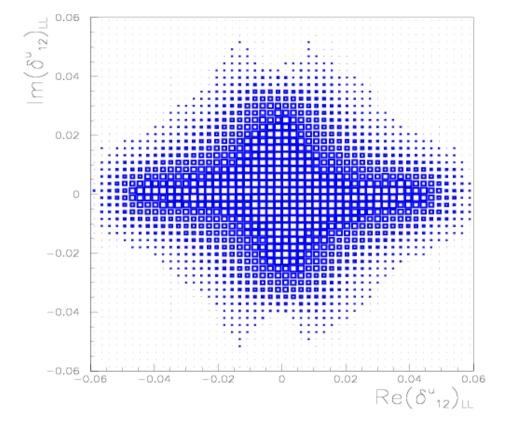

- We consider a MSSM with generic soft SUSY-breaking terms, but
 - dominant gluino contributions only
 - mass insertion approximation

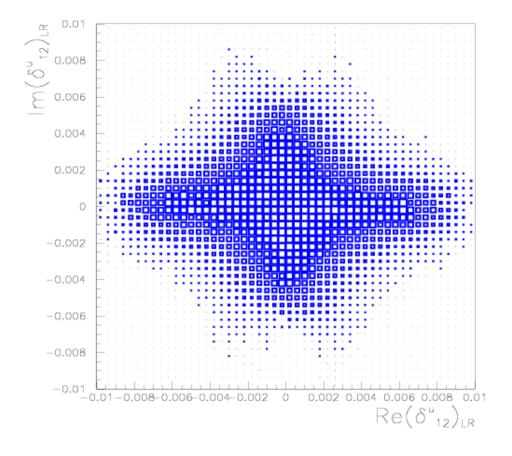
Think of δ 's as SUSY equivalent of CKM mixing AR

four insertions AB=LL, LR, RL, RR

CONSTRAINTS ON δ 's

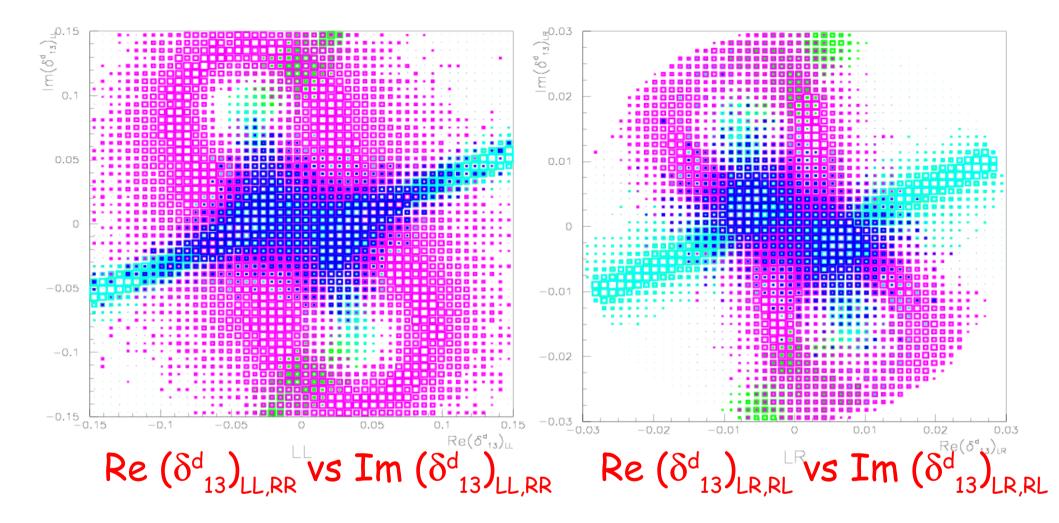
- $\binom{d_{12}}{AB}_{AB}$ contribute to Kaon mixing: constraints from Δm_{k} & ε_{k} • $\binom{d_{13}}{dR}$ contribute to B mixing: constraints from $\Delta m_{\rm B} \& \sin 2\beta$ • $\binom{d}{\delta^{23}}_{AB}$ contribute to Bs mixing and b \rightarrow s decays: constraints from Δm_{Rs} , $b \rightarrow s\gamma$, $b \rightarrow sl^+l^-$
- for reference, choose $m_{gl} = m_{sq} = 350 \text{ GeV}$

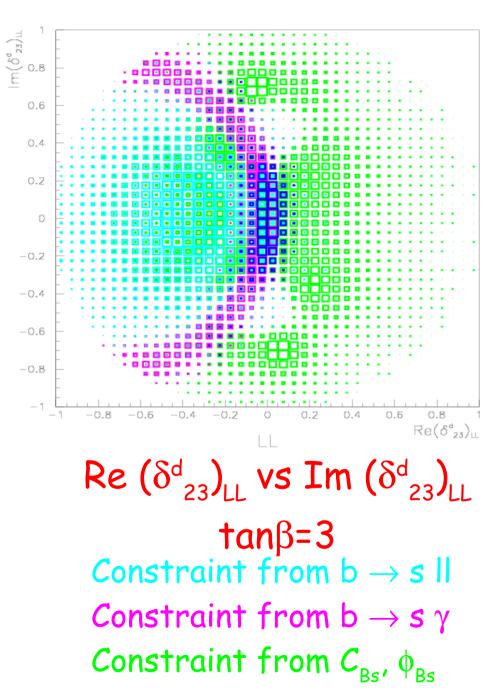

 Δm_{k} only ϵ'/ϵ only ϵ_{k} only Δm_{k} and ϵ_{k} $m_{sa}=1$


Luca Silvestrini

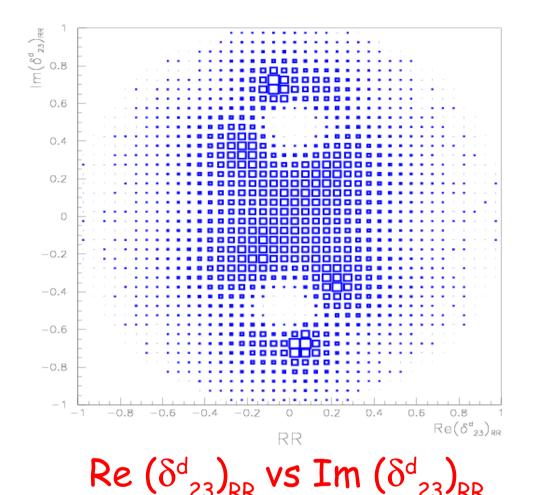
 $m_{sq} = m_{gl} = 350 \text{ GeV}$ Kaon 2007, Frascati

Re $(\delta^{u}_{12})_{LL,RR}$ vs Im $(\delta^{u}_{12})_{LL,RR}$

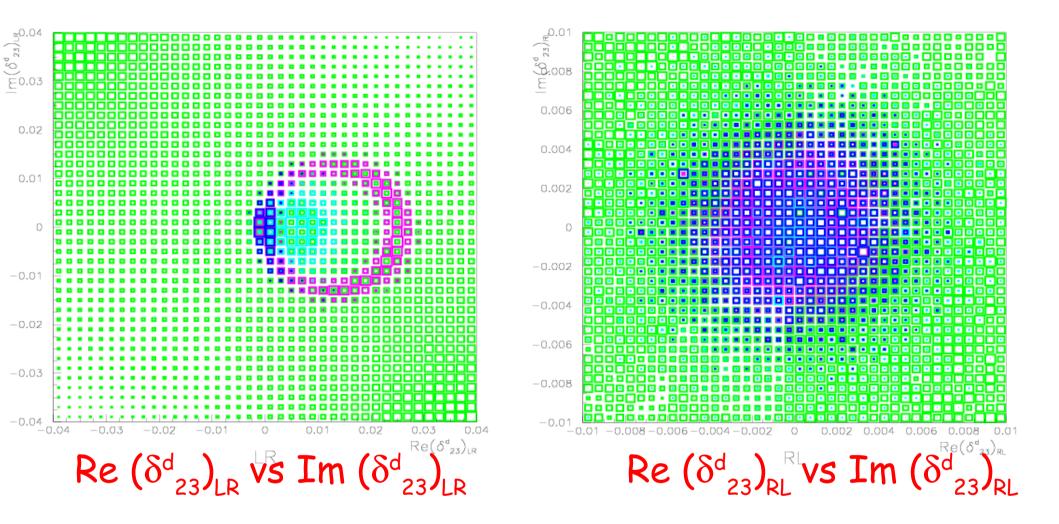

Re $(\delta^{u}_{12})_{LR}$ vs Im $(\delta^{u}_{12})_{LR}$


All information from D mixing combined $m_{sq} = m_{gl} = 350 \text{ GeV}$

Ciuchini et al. '07



 Δm_{B} only sin 2 β only


sin 2β and cos 2β All constraints

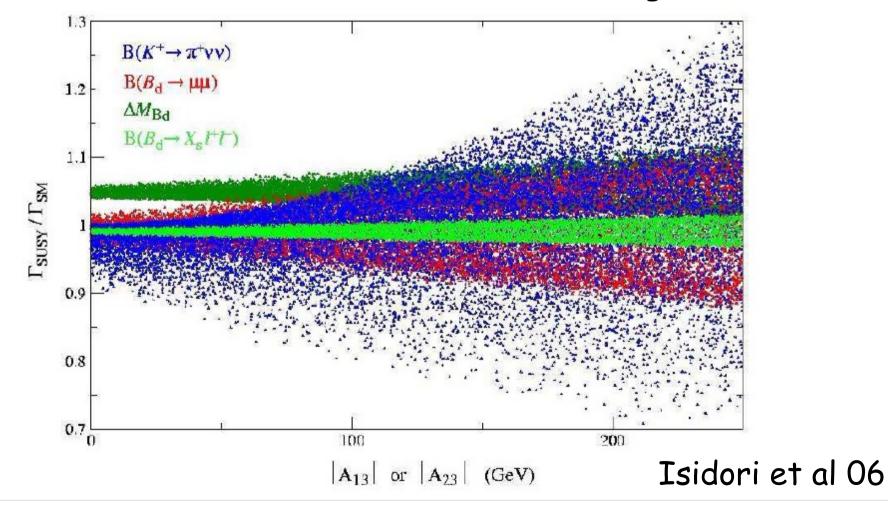
All constraints

RR case dominated by B_s mixing

LR & RL dominated by BR(b \rightarrow s γ) & BR(b \rightarrow s I⁺I⁻) RL does not interfere with the SM

$\left(\delta^{d}_{12} \right)_{LL,RR}$	$\left \left(\delta^d_{12} \right)_{LL=RR} \right $	$\left \left(\delta^d_{12} \right)_{LR} \right $	$\left \left(\delta^d_{12} \right)_{RL} \right $
$1 \cdot 10^{-2}$	$2\cdot 10^{-4}$	$5\cdot 10^{-4}$	$5\cdot 10^{-4}$
$\left (\delta^u_{12})_{LL,RR} \right $	$ (\delta_{12}^u)_{LL=RR} $	$ (\delta^u_{12})_{LR} $	$ (\delta^u_{12})_{RL} $
$4 \cdot 10^{-2}$	$2\cdot 10^{-3}$	$6\cdot 10^{-3}$	$6 \cdot 10^{-3}$
$\left \left(\delta^d_{13} \right)_{LL,RR} \right $	$\left \left(\delta^d_{13} \right)_{LL=RR} \right $	$\left \left(\delta^d_{13} \right)_{LR} \right $	$\left \left(\delta^d_{13} \right)_{RL} \right $
$7 \cdot 10^{-2}$	$5\cdot 10^{-3}$	$1\cdot 10^{-2}$	$1 \cdot 10^{-2}$
$\left \left(\delta^d_{23} \right)_{LL} \right $	$\left \left(\delta^d_{23} \right)_{RR} \right $	$\left \left(\delta^d_{23} \right)_{LL=RR} \right $	$\left(\delta^d_{23}\right)_{LR,RL}$
$2 \cdot 10^{-1}$	$7\cdot 10^{-1}$	$5\cdot 10^{-2}$	$5\cdot 10^{-3}$

 $m_{sq}=m_{gl}=-\mu=350$ GeV, tan $\beta=3$;

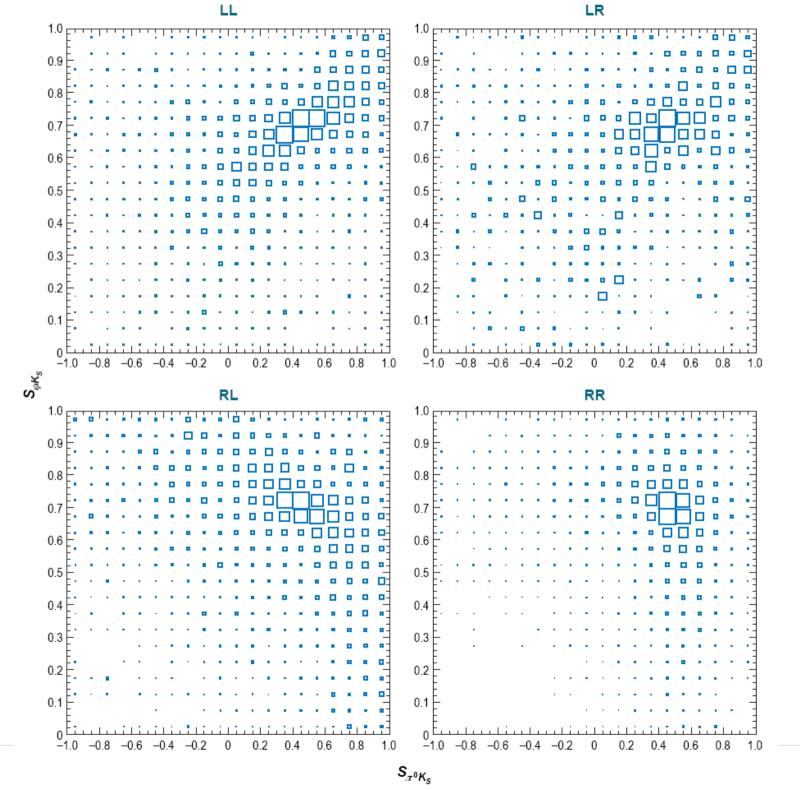

all bounds scale approx. as m_{susy}/350 GeV

Luca Silvestrini

Kaon 2007, Frascati

EFFECTS OF LR UP-TYPE $\delta's$

Colangelo & Isidori


Luca Silvestrini

Kaon 2007, Frascati

EFFECTS OF (δ^{d}_{23})

Bertolini, Borzumati, Masiero, NPB294; Ciuchini et al., PRL79; Barbieri, Strumia, NPB508; Kagan, Neubert, PRD58; Abel, Cottingham, Wittingham PRD58; Borzumati et al., PRD62; Besmer, Greub, Hurth NPB609; Lunghi, Wyler, PLB521; Causse; Hiller, PRD66; Khalil, Kou PRD67; Kane et al., PRL90; Harnik et al.; Ciuchini et al., PRD67; Baek, PRD67; Hisano, Shimizu, PLB581; Gabrielli et al., NPB710; Khalil, hep-ph/0505151;...

- Large values of (δ^{d}_{23}) well motivated: SUSY flavour models, SUSY-GUTs and neutrino oscillations
- Possible hints of NP in time-dependent CP viol. in b \rightarrow s penguins (B $\rightarrow \phi K_s, B \rightarrow \pi K_s$)

Ciuchini et al

Page 32

CONCLUSIONS - I

- Flavour physics is a powerful probe of NP
- B-factories + TeVatron: from O(1) to O(10%) NP effects in all sectors (except ϕ_{Bs}); 2015 goal: O(1%) in all sectors (LHCb, SFF, lattice QCD, JPARC)
- Bottom-up approach for $\Delta F=2$: operator analysis gives strong constraints on the scale of NP

CONCLUSIONS - II

- Sensitivity to scales much higher than m_{EW} :
 - -NP models with generic flavour structure far beyond LHC
 - -NP models with NMFV:
 - beyond the reach of LHC if tree-level FCNC
 - at the border of LHC if loop-mediated, weakly int.
 - -MFV models still within LHC reach
 - top-down approach to test model-dependent predictions and correlations

CONCLUSIONS - III

- Different classes of SUSY models can be discriminated:
 - -SUSY MFV @ low tanβ: O(<10%) effects in UTA, rare K and B decays
 - -SUSY MFV or heavy squarks @ large tang: large effects in $B_s \rightarrow \mu\mu \& B \rightarrow \tau v$
 - -SUSY with FV confined to 3rd generation
 - nonuniversal A₊: rare K decays
 - δ_{23} : b \rightarrow s penguins

GENERAL CONSIDERATIONS

b→d Pattern of s→d b→s b→dll b→sll $K \rightarrow \pi \nu \nu$ NP effects K \rightarrow πee B \rightarrow ππ.... $B \rightarrow K\pi$,... **EWP** depends on **Κ**→μμ $b \rightarrow dvv$ b→svv **e'** operators $K \rightarrow \pi e e$ $b \rightarrow d\gamma$ b→sγ generated b→sll b→dll magnetic **E** at the $B \rightarrow K\pi$,... $B \rightarrow \pi \pi$,... b→dll b→sll hadronic $B_{s} \rightarrow \mu \mu, \dots$ scalar $B \rightarrow \mu \mu,...$ scale Δm_{c} $B \rightarrow \tau v$

MFV @ SMALL tan β (CMFV)

Improv Bound		Including Impact from R ⁰ _b , A _b , A ^{0,b} _{FB}				
(2007						
	Branching Ratios	CMFV (95%)	SM (95%)	Exp		
	$Br(K^+ \rightarrow \pi^+ \nu \overline{\nu}) \cdot 10^{11}$	3.9-10.7	5.5-9.5	$14.7^{+13.0}_{-8.9}$		
	$Br(K_L \rightarrow \pi^0 \nu \overline{\nu}) \cdot 10^{11}$	1.2-4.5	2.3-3.6	<2.1.104		
	$Br(B \to X_{s} \nu \overline{\nu}) \cdot 10^{5}$	1.5-4.7	3.0-3.6	<64		
	$Br(B_s \rightarrow \mu^+ \mu^-) \cdot 10^9$	0.8-6.1	2.9-4.2	<1.0·10 ²		
	$Br(B_d \rightarrow \mu^+ \mu^-) \cdot 10^{10}$	0.2-1.5	0.9-1.3	<3.0·10 ²		

42 CERN0307 A. Buras