Lattice Progress on $\varepsilon^{\prime} / \varepsilon$

Robert Mawhinney
Columbia University
For the RBC and UKQCD Collaborations

Kaon 2007
INFN Frascati
May 22, 2007

- Introduction and reminder about quenched $\varepsilon^{\prime} / \varepsilon$ results
- Progress with $2+1$ flavor dynamical QCD simulations
- Chiral perturbation theory and lattice data for m_{π} and f_{π}
- The denominator of $\varepsilon^{\prime} / \varepsilon: \mathrm{B}_{\mathrm{K}}$ and ε
- Preliminary results for $\Delta S=1$ matrix elements for $\varepsilon^{\prime} / \varepsilon$
- Conclusions

CP Violation in the Kaon System

- Two amplitudes determine ϵ and ϵ^{\prime}

$$
\eta_{+-}=\frac{A\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)}=\epsilon+\epsilon^{\prime} \quad \eta_{00}=\frac{A\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)}{A\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)}=\epsilon-2 \epsilon^{\prime}
$$

- SM: $\bar{K}^{0}-K^{0}$ mixing via $Q^{(\Delta S=2)}=\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{s}_{\beta} d_{\beta}\right)_{V-A}$ defines B_{K} as;

$$
\left.\left\langle\bar{K}^{0}\right| Q^{(\Delta S=2)}(\mu)\left|K^{0}\right|\right\rangle \equiv \frac{8}{3} B_{K}(\mu) f_{K}^{2} m_{K}^{2}
$$

- RGI parameter $\hat{B}_{K} \equiv B_{K}(\mu)\left[\alpha_{s}^{(3)}(\mu)\right]^{-2 / 9}\left[1+\frac{\alpha_{s}^{(3)}(\mu)}{4 \pi} J_{3}\right]$ relates SM and ϵ

$$
\epsilon=\hat{B}_{K} \operatorname{Im} \lambda_{t} \frac{G_{F}^{2} f_{K}^{2} m_{K} M_{W}^{2}}{12 \sqrt{2} \pi^{2} \Delta M_{K}}\left\{\operatorname{Re} \lambda_{c}\left[\eta_{1} S_{0}\left(x_{c}\right)-\eta_{3} S_{0}\left(x_{c}, x_{t}\right)\right]-\operatorname{Re} \lambda_{t} \eta_{2} S_{0}\left(x_{t}\right)\right\} \exp (i \pi / 4)
$$

- Defining $A\left(K^{0} \rightarrow \pi \pi(I)\right) \equiv A_{I} e^{\left(i \delta_{I}\right)}, P_{2} \equiv \operatorname{Im} A_{2} / \operatorname{ReA}_{2}, P_{0} \equiv \operatorname{Im} A_{0} / \operatorname{ReA}_{0}$:

$$
\epsilon^{\prime}=\frac{i e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2}}\left(\frac{\operatorname{Re} A_{2}}{\operatorname{Re} A_{0}}\right)\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right) \quad w \equiv \frac{\operatorname{Re} A_{0}}{\operatorname{Re} A_{2}} \approx 22
$$

Low Energy Standard Model Diagrams for B_{K}

Electroweak process at high energy scales reduce to a single 4-fermion operator at low energies

Need correctly normalized value of the $\mathrm{Q}^{\Delta \mathrm{S}=2}$ operator in kaon states.

Standard Model Diagrams for $\varepsilon^{\prime} / \varepsilon$

$K \rightarrow \pi \pi$ in 3-flavor Effective Theory

- Hamiltonian for 3-flavor effective theory: only 7 of 10 operators independent

$$
\mathcal{H}^{(\Delta S=1)}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}
$$

- $K \rightarrow \pi \pi$ from lattice calculations and LO chiral perturbation theory.

Irrep	Isospin	$K^{+} \rightarrow \pi^{+}$	$K^{0} \rightarrow \pi^{+} \pi^{-}$
$(27,1)$	$1 / 2,3 / 2$	$-\frac{4 m_{M}^{2}}{f^{2}} \alpha^{(27,1)}$	$-\frac{4 i}{f^{3}} m_{K^{0}}^{2} \alpha^{(27,1)}$
$(8,8)$	$1 / 2,3 / 2$	$-\frac{12}{f^{2}} \alpha^{(8,8)}$	$-\frac{12 i}{f^{3}} \alpha^{(8,8)}$
$(8,1)$	$1 / 2$	$\frac{4 m_{M}^{2}}{f^{2}}\left(\alpha_{1}^{(8,1)}-\alpha_{2}^{(8,1)}\right)$	$\frac{4 i}{f^{3}} m_{K^{0}}^{2} \alpha_{1}^{(8,1)}$

- $(8,1)$ coefficient $\alpha_{2}^{(8,1)}$ is power divergent, $\mathcal{O}\left(1 / a^{2}\right)$. Determine from $K \rightarrow|0\rangle$

Quenched Chiral Extrapolations $(27,1)$ and $(8,1)$

Fit with known continuum chiral logarithm for quenched theory

$$
1-\frac{6 m_{M}^{2}}{(4 \pi f)^{2}} \ln \left(m_{M}^{2} / \Lambda^{2}\right)
$$

Good description of data, but $400 \mathrm{MeV} \leq m_{\mathrm{PS}} \leq 800 \mathrm{MeV}$

Only slope relevant in subtracted ME

Real $K \rightarrow \pi \pi$ Amplitudes from Quenched QCD and $\chi \mathbf{P T}$

$\epsilon^{\prime} / \epsilon$ from Quenched QCD and $\chi \mathbf{P T}$

- Dominant contribution: Q_{2} to $\operatorname{Re} A_{2}$ and $\operatorname{Re} A_{0}, Q_{6}$ to $\operatorname{Im} A_{0}, Q_{8}$ to $\operatorname{Im} A_{2}$.
- Contributions depend on renormalization scale GeV
- Schematic formula for $\epsilon^{\prime} / \epsilon$

$$
\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right) \approx\left(\frac{\omega}{\sqrt{2}|\epsilon|}\right)_{\exp }\left\{\left[\frac{\alpha_{\mathrm{W}} \alpha_{8}}{\alpha_{\mathrm{W}} \alpha_{8}+\alpha_{2} m_{K^{0}}^{2} \xi}\right]^{(3 / 2)}-\left[\frac{\alpha_{\mathrm{W}} \alpha_{8}+\alpha_{\mathrm{S}} \alpha_{6} m_{K^{0}}^{2} \xi}{\alpha_{\mathrm{W}} \alpha_{8}+\alpha_{2} m_{K^{0}}^{2} \xi}\right]^{(1 / 2)}\right\}
$$

Achieving Accurate Kaon Physics on the Lattice

Issue	Current status
Quenched approximation	$2+1$ flavor DWF and ASQTAD
Chiral symmetry breaking	Staggered fermions Twisted mass Wilson fermions Domain wall fermion \checkmark Overlap fermions \checkmark
Heavy pions	ASQTAD: one pion has $\mathrm{m}_{1}=\mathrm{m}_{\mathrm{s}} / 10$ DWF: correct light pions with $\mathrm{m}_{1}=\mathrm{m}_{\mathrm{s}} / 7$
Operator Renormalization	Non-perturbative renormalization (NPR) Schrodinger functional methods
Extrapolation to chiral limit	Chiral perturbation theory: DWF - continuum like ASQTAD - include taste breaking
Multiparticle final states	1) Avoid via ChPT 2) Use finite volume effects
More computing speed	Many sustained Teraflops currently

25,000 nodes at Brookhaven RBRC and USDOE machines

14,000 nodes at the University of Edinburgh

Collaboration Members

RBC members:

Y. Aoki, C. Aubin, T. Blum, M. Cheng, N. Christ, S. Cohen, C.
Dawson, T. Doi, K. Hashimoto, T. Ishikawa, T. Izubuchi, C. Jung, M. Li, S. Li, M. Lightman, H. Lin, M. Lin, O. Loktik, R. Mawhinney, S. Ohta, S. Sasaki, E. Scholz, A. Soni, T. Yamazaki

UKQCD members:
C. Allton, D. Antonio, K. Bowler, P. Boyle, M. Clark, J. Flynn, A. Hart, B. Joo, A. Juettner, A. Kennedy, R. Kenway, C. Kim, C. Maynard, J. Noaki, B. Pendleton, C. Sachrajda, A. Trivini, R. Tweedie, J. Wennekers, A. Yamaguchi, J. Zanotti

Zero Temperature Ensembles

Volume	$a^{-1}(\mathrm{GeV})$	$\left(m_{l} m_{s}\right)$	$m_{\text {res }}$	MD time units
$16^{3} \times 32 \times 12$	1.69(5)		0.00137(5)	$\begin{aligned} & 2680.5 \\ & 3097.5 \\ & 3252.5 \\ & \hline \end{aligned}$
$16^{3} \times 32 \times 8$	1.8(1)	$\begin{array}{\|c} \hline(0.02,0.04) \\ (0.04,0.04) \\ \hline \end{array}$	0.0107(1)	$\begin{aligned} & 1797.5 \\ & 1797.5 \\ & \hline \end{aligned}$
$16^{3} \times 32 \times 16$	1.62(4)	$\begin{gathered} \hline(0.01,0.04) \\ (0.02,0.04) \\ (0.03,0.04) \\ \hline \end{gathered}$	0.00308(4)	4015 4045 $4020+3580$
$24^{3} \times 64 \times 16$	1.6-1.7	$\begin{gathered} \hline(0.005,0.04) \\ (0.01,0.04) \\ (0.02,0.04) \\ (0.03,0.04) \\ \hline \end{gathered}$	0.0031	$\begin{aligned} & 4500 \\ & 3785 \\ & 2850 \\ & 2813 \\ & \hline \end{aligned}$
$32^{3} \times 64 \times 16$	2.1-2.2	$\begin{aligned} & (0.004,0.03) \\ & (0.006,0.03) \\ & \hline \end{aligned}$	≈ 0.0005	$\begin{aligned} & 500 \\ & 892 \end{aligned}$

First row is with DBW2 gauge action, all others use the Iwasaki action.

Partially Quenched NLO ChPT for m_{π} and f_{π}

$(3 \mathrm{fm})^{3}$ volume	
$\mathrm{m}_{\text {dyn }}$ (MeV)	$\mathrm{m}_{\text {val }}$ (MeV)
550	550
400	400
320	320
	220
400	400
320	320
	220

Meifeng Lin
DWF@ 10

B_{K} Plateau

 Saul Cohen

B Plateau on $16^{3}, m_{s}^{\text {sea }}=0.04, m_{l}^{\text {sea }}=0.02$

24^{3} volume

Fitting B_{PS} to NLO Partially Quenched ChPT

Both 16^{3} and 24^{3} volumes are fit to same range of masses, 400 to 750

MeV.

NLO formula are reasonable interpolations of our data, but fail to go through light quark mass points.

Unitary Extrapolation for B_{K}

Compare simple unitary extrapolation to result with partially quenched ChPT.

Get same result within statistical errors.

Final Result for B_{K}

$\mathrm{B}_{\mathrm{K}}{ }^{(\overline{\mathrm{MS}})}(2 \mathrm{GeV})=0.557(12)(29)$ extrapolated to continuum

B_{K} Comparison

Graph from Chris Dawson Lattice 2005

$\mathrm{B}_{\mathrm{K}}{ }^{(\overline{\mathrm{MS}})}(2 \mathrm{GeV})=0.557(12)(29)$ extrapolated to continuum RBC and UKQCD Collaborations

$$
\mathrm{B}_{\mathrm{K}}{ }^{\overline{\mathrm{MS}})}(2 \mathrm{GeV})=0.58(3)(6) \text { world average }
$$

Chris Dawson, Lattice 2005, PoS(LAT2005) 007

B_{K} in the Chiral Limit: B_{0}

- Use data from (3 fm $)^{3}$ volume
- Only pseudoscalars with mass $\leq 400 \mathrm{MeV}$
- 12 data points used in fits
- Preliminary result: $\mathrm{B}_{0}{ }^{(\overline{\mathrm{MS}})}(2 \mathrm{GeV})=0.34(5)$

$\varepsilon^{\prime} / \varepsilon$ on $2+1$ flavor, $(3 \mathrm{fm})^{3}$ ensembles

- Valence masses $0.001,0.005,0.01,0.02,0.03,0.04\left(\mathrm{~m}_{\mathrm{s}} / 10\right.$ to $\left.\mathrm{m}_{\mathrm{s}}\right)$
- Concentrating on 0.005/0.04 and 0.01/0.04 ensembles
- Large contributions by Tom Blum, Saul Cohen, Sam Li.
- 0.005/0.04 ensemble: 40 configurations separated by 80 MD time units. 0.01/0.04 ensemble: 30 configurations separated by 80 MD time units
- Concentrating on lighter quark masses where NLO chiralperturbation theory should be reasonable.
- Coulomb gauge fixed wall sources at $\mathrm{t}=5$ and 59
- Random noise source of length 40 for pupil calculations
- $1 / 2$ of time in wall source calculations, the other $1 / 2$ in pupils

$\Delta \mathrm{I}=3 / 2$ Plateau

$\Delta \mathrm{I}=3 / 2$ Plateau Comparisons

Previous Quenched

New 2+1 Flavor

$\Delta \mathrm{I}=3 / 2$ Plateau

$\Delta \mathrm{I}=1 / 2$ Plateau - unsubtracted Q_{6}

$\Delta \mathrm{I}=1 / 2$ Plateau $-\overline{\mathrm{s}} \mathrm{d}$

Comparing $\Delta \mathrm{I}=1 / 2$ Plateau

Common fluctuations in Q_{6} and $\overline{\text { sd }}$

$\Delta \mathrm{I}=1 / 2$ Subtraction

$\Delta \mathrm{I}=1 / 2$ Subtraction Coefficient Comparisons

$$
\frac{\langle 0| Q_{i, \text { lat }}\left|K^{0}\right\rangle}{\langle 0|\left(\bar{s} \gamma_{5} d\right)_{\text {lat }}\left|K^{0}\right\rangle}=\eta_{0, i}+\eta_{1, i}\left(m_{s}-m_{d}\right)
$$

Previous Quenched

New 2+1 Flavor

Subtracting Q_{6}

Subtracting Q_{6}

Subtracted Q_{6}

Subtracted Q_{6} Comparison

$$
\left\langle\pi^{+}\right| Q_{i, \mathrm{lat}}^{(1 / 2)}\left|K^{+}\right\rangle+\eta_{1, i}\left(m_{s}+m_{d}\right)\left\langle\pi^{+}\right|(\bar{s} d)_{\text {lat }}\left|K^{+}\right\rangle
$$

Previous Quenched

New 2+1 Flavor

$\mathrm{m}_{\text {res }}$ and $\Delta \mathrm{S}=1$ matrix elements

- Spurion field Ω at midpoint represents residual $\chi \mathrm{SB}$
- Transforms as $(\overline{3}, 3)$ under chiral symmetry
- For low energy observables, Ω goes to $\mathrm{m}_{\text {res }}$
- For divergent quantities, new parameters enter which are $\mathrm{O}\left(\mathrm{m}_{\text {res }}\right)$
- Due to unsupressed modes in 5-d, two powers of Ω can enter with the same size as a single power of Ω
- Higher order terms are a few percent effect and can be subtracted
- Discussed by Christ and Sharpe at DWF@ 10 meeting at BNL

$$
\left\langle K^{+}\right| Q_{6}\left|\pi^{+}\right\rangle \sim\left\{\frac{(m+\Omega)}{a^{3}}+\frac{(m+\Omega)^{3}}{a^{3}}\right\}\left\langle K^{+}\right| \bar{s} d\left|\pi^{+}\right\rangle+\frac{\Omega}{a}\left\langle K^{+}\right| \bar{s} \sigma \cdot F d\left|\pi^{+}\right\rangle
$$

Chiral Perturbation Theory and $\varepsilon^{\prime} / \varepsilon$

- Simulations will have a fixed, dynamical strange quark mass, which may be outside range of utility of NLO ChPT
- Lightest quark mass, $\mathrm{m}_{\mathrm{s}} / 10$, may need finite volume corrections added to ChPT formula.
- 2+1 flavor partially quenched ChPT being done by Aubin, Laiho and Li
- $(8,8)$ and $(27,1)$ operators complete. $(8,1)$ operators are well underway

$\varepsilon^{\prime} / \varepsilon$ Summary

- Have summarized RBC-UKQCD calculation of NLO coefficients from K -> π and K -> vacuum
- Work on $\mathrm{K}->\pi \pi$ at unphysical kinematics underway
- Lee and Sharpe are using ASQTAD staggered fermions, with smearings, to calculate $\mathrm{B}_{\mathrm{K}}, \mathrm{B}_{7}$ and B_{8}. Testing to see how much smearing can help with operator mixing
- Hernandez, et. al. are working in the epsilon regime (quenched) to explore $\Delta \mathrm{I}=1 / 2$ rule
- Lellouch, et. al. are using overlap fermions on lattices generated with 2 flavors of Wilson fermions to look at B_{K} and $\varepsilon^{\prime} \varepsilon$.

Conclusions

- 2+1 flavor DWF QCD simulations well underway
$(3 \mathrm{fm})^{3}$ volumes at two lattice scales
$m_{l}=m_{s} / 5$ on $a^{-1}=1.6 \mathrm{GeV}$ lattices
$m_{l}=m_{s} / 7$ on $a^{-l}=2.1 \mathrm{GeV}$ lattices
- $\Delta \mathrm{S}=1$ matrix elements appear to be benefitting from large spatial volume, giving reduced statistical errors.
- From comparison of ChPT to data, we are investigating range of pseudoscalar masses where NLO ChPT is accurate to, say 10%.
- For $\varepsilon^{\prime} / \varepsilon$, NLO fits for $\Delta \mathrm{I}=3 / 2$ amplitudes should work.
- For $\Delta \mathrm{I}=1 / 2$ amplitudes, statistical errors will likely limit NLO fits
- $\mathrm{K}->\pi \pi$, tests underway to get needed constant.
- Major systematic in final result likely ChPT
- Multiparticle final states a few years away...

