Lattice Progress on ϵ'/ϵ

Robert Mawhinney Columbia University For the RBC and UKQCD Collaborations

> Kaon 2007 INFN Frascati May 22, 2007

- Introduction and reminder about quenched ϵ'/ϵ results
- Progress with 2+1 flavor dynamical QCD simulations
- Chiral perturbation theory and lattice data for m_{π} and f_{π}
- The denominator of ε'/ε : B_{K} and ε
- Preliminary results for $\Delta S = 1$ matrix elements for ϵ'/ϵ
- Conclusions

CP Violation in the Kaon System

• Two amplitudes determine ϵ and ϵ'

$$\eta_{+-} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon' \qquad \eta_{00} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon - 2\epsilon'$$

• SM: $\overline{K}^0 - K^0$ mixing via $Q^{(\Delta S=2)} = (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{s}_{\beta} d_{\beta})_{V-A}$ defines B_K as; $\langle \overline{K}^0 | Q^{(\Delta S=2)}(\mu) | K^0 | \rangle \equiv \frac{8}{3} B_K(\mu) f_K^2 m_K^2$

• RGI parameter $\hat{B}_K \equiv B_K(\mu) \left[\alpha_s^{(3)}(\mu) \right]^{-2/9} \left[1 + \frac{\alpha_s^{(3)}(\mu)}{4\pi} J_3 \right]$ relates SM and ϵ

$$\epsilon = \hat{B}_K \operatorname{Im}\lambda_t \frac{G_F^2 f_K^2 m_K M_W^2}{12\sqrt{2}\pi^2 \Delta M_K} \left\{ \operatorname{Re}\lambda_c \left[\eta_1 S_0(x_c) - \eta_3 S_0(x_c, x_t) \right] - \operatorname{Re}\lambda_t \eta_2 S_0(x_t) \right\} \exp(i\pi/4)$$

• Defining $A(K^0 \to \pi \pi(I)) \equiv A_I e^{(i\delta_I)}, P_2 \equiv \text{Im}A_2/\text{ReA}_2, P_0 \equiv \text{Im}A_0/\text{ReA}_0$:

$$\epsilon' = \frac{ie^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \left(\frac{\operatorname{Re} A_2}{\operatorname{Re} A_0}\right) \left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0}\right) \qquad w \equiv \frac{\operatorname{Re} A_0}{\operatorname{Re} A_2} \approx 22$$

Low Energy Standard Model Diagrams for B_K

Electroweak process at high energy scales reduce to a single 4-fermion operator at low energies

Need correctly normalized value of the $Q^{\Delta S=2}$ operator in kaon states.

Standard Model Diagrams for ϵ'/ϵ

$K \rightarrow \pi \pi$ in 3-flavor Effective Theory

• Hamiltonian for 3-flavor effective theory: only 7 of 10 operators independent

$$\mathcal{H}^{(\Delta S=1)} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) + \tau y_i(\mu) \right] Q_i \right\}$$

• $K \to \pi \pi$ from lattice calculations and LO chiral perturbation theory.

Irrep	Isospin	$K^+ \to \pi^+$	$K^0 \to \pi^+ \pi^-$
(27,1)	1/2, 3/2	$-rac{4m_{M}^{2}}{f^{2}}lpha^{(27,1)}$	$-rac{4i}{f^3}m_{K^0}^2lpha^{(27,1)}$
(8,8)	1/2, 3/2	$-rac{12}{f^2}lpha^{(8,8)}$	$-rac{12i}{f^3}lpha^{(8,8)}$
(8,1)	1/2	$\frac{4m_M^2}{f^2}(lpha_1^{(8,1)}-lpha_2^{(8,1)})$	$rac{4i}{f^3}m_{K^0}^2lpha_1^{(8,1)}$

• (8,1) coefficient $\alpha_2^{(8,1)}$ is power divergent, $\mathcal{O}(1/a^2)$. Determine from $K \to |0\rangle$

Quenched Chiral Extrapolations (27,1) and (8,1)

Fit with known continuum chiral logarithm for quenched theory

$$1 - \frac{6m_M^2}{(4\pi f)^2}\ln(m_M^2/\Lambda^2)$$

Good description of data, but $400 \text{ MeV} \le m_{\text{PS}} \le 800 \text{ MeV}$

Only slope relevant in subtracted ME

Real $K \rightarrow \pi \pi$ Amplitudes from Quenched QCD and χPT

ϵ'/ϵ from Quenched QCD and χPT

- Dominant contribution: Q_2 to Re A_2 and Re A_0 , Q_6 to Im A_0 , Q_8 to Im A_2 .
- Contributions depend on renormalization scale GeV
- Schematic formula for ϵ'/ϵ

$$\operatorname{Re}(\epsilon'/\epsilon) \approx \left(\frac{\omega}{\sqrt{2}|\epsilon|}\right)_{\exp} \left\{ \left[\frac{\alpha_{\mathrm{W}}\alpha_{8}}{\alpha_{\mathrm{W}}\alpha_{8} + \alpha_{2}m_{K^{0}}^{2}\xi}\right]^{(3/2)} - \left[\frac{\alpha_{\mathrm{W}}\alpha_{8} + \alpha_{3}\alpha_{6}m_{K^{0}}^{2}\xi}{\alpha_{\mathrm{W}}\alpha_{8} + \alpha_{2}m_{K^{0}}^{2}\xi}\right]^{(1/2)} \right\}$$

Achieving Accurate Kaon Physics on the Lattice

Issue	Current status	
Quenched approximation	2+1 flavor DWF and ASQTAD	
Chiral symmetry breaking	Staggered fermions	
	Twisted mass Wilson fermions	
	Domain wall fermion ✓	
	Overlap fermions ✓	
Heavy pions	ASQTAD: one pion has $m_1 = m_s/10$	
	DWF: correct light pions with $m_1 = m_s/7$	
Operator Renormalization	Non-perturbative renormalization (NPR)	
	Schrodinger functional methods	
Extrapolation to chiral limit	Chiral perturbation theory:	
_	DWF - continuum like	
	ASQTAD - include taste breaking	
Multiparticle final states	1) Avoid via ChPT	
	2) Use finite volume effects	
More computing speed	Many sustained Teraflops currently	

25,000 nodes at Brookhaven RBRC and USDOE machines

14,000 nodes at the University of Edinburgh

Collaboration Members

RBC members:

Y. Aoki, C. Aubin, T. Blum, M. Cheng, N. Christ, S. Cohen, C. Dawson, T. Doi, K. Hashimoto, T. Ishikawa, T. Izubuchi, C. Jung, M. Li, S. Li, M. Lightman, H. Lin, M. Lin, O. Loktik, R. Mawhinney, S. Ohta, S. Sasaki, E. Scholz, A. Soni, T. Yamazaki

UKQCD members:

C. Allton, D. Antonio, K. Bowler, P. Boyle, M. Clark, J. Flynn,A. Hart, B. Joo, A. Juettner, A. Kennedy, R. Kenway, C. Kim,C. Maynard, J. Noaki, B. Pendleton, C. Sachrajda, A. Trivini, R. Tweedie, J. Wennekers, A. Yamaguchi, J. Zanotti

Zero Temperature Ensembles

Volume	a^{-1} (GeV)	$(m_{l} m_{s})$	<i>m</i> _{res}	MD time
volume				units
	1.69(5)	(0.02,∞)	0.00137(5)	2680.5
$16^3 \times 32 \times 12$		(0.03,∞)		3097.5
		(0.04,∞)		3252.5
$16^3 \times 32 \times 8$	1.8(1)	(0.02, 0.04)	0.0107(1)	1797.5
		(0.04, 0.04)		1797.5
	1.62(4)	(0.01, 0.04)	0.00308(4)	4015
$16^3 \times 32 \times 16$		(0.02, 0.04)		4045
		(0.03, 0.04)		4020+3580
		(0.005,0.04)	0.0031	4500
243264216	1617	(0.01, 0.04)		3785
$24^{\circ} \times 04 \times 10$	1.0-1./	(0.02, 0.04)		2850
		(0.03, 0.04)		2813
$32^3 \times 64 \times 16$	2.1-2.2	(0.004, 0.03)	≈ 0.0005	500
		(0.006, 0.03)		892

First row is with DBW2 gauge action, all others use the Iwasaki action.

Partially Quenched NLO ChPT for m_{π} and f_{π}

Fitting B_{PS} to NLO Partially Quenched ChPT

Both 16³ and 24³ volumes are fit to same range of masses, 400 to 750 MeV.

NLO formula are reasonable interpolations of our data, but fail to go through light quark mass points.

Unitary Extrapolation for B_{κ}

Compare simple unitary extrapolation to result with partially quenched ChPT.

Get same result within statistical errors.

Final Result for B_{κ}

 $B_{K}^{(\overline{MS})}(2 \text{ GeV}) = 0.557(12)(29)$ extrapolated to continuum

Graph from Chris Dawson Lattice 2005

 $B_{K}^{(\overline{MS})}(2 \text{ GeV}) = 0.557(12)(29)$ extrapolated to continuum RBC and UKQCD Collaborations

 $B_{K}^{(MS)}(2 \text{ GeV}) = 0.58(3)(6)$ world average Chris Dawson, Lattice 2005, PoS(LAT2005) 007

B_{K} in the Chiral Limit: B_{0}

- Use data from (3 fm)³ volume
- Only pseudoscalars with mass $\leq 400 \text{ MeV}$
- 12 data points used in fits
- Preliminary result: $B_0^{(\overline{MS})}(2 \text{ GeV}) = 0.34(5)$

ϵ'/ϵ on 2+1 flavor, (3 fm)³ ensembles

- Valence masses 0.001, 0.005, 0.01, 0.02, 0.03, 0.04 $(m_s/10 \text{ to } m_s)$
- Concentrating on 0.005/0.04 and 0.01/0.04 ensembles
- Large contributions by Tom Blum, Saul Cohen, Sam Li.
- 0.005/0.04 ensemble: 40 configurations separated by 80 MD time units. 0.01/0.04 ensemble: 30 configurations separated by 80 MD time units
- Concentrating on lighter quark masses where NLO chiralperturbation theory should be reasonable.
- Coulomb gauge fixed wall sources at t = 5 and 59
- Random noise source of length 40 for pupil calculations
- 1/2 of time in wall source calculations, the other 1/2 in pupils

$\Delta I = 3/2$ Plateau

$\Delta I = 3/2$ Plateau Comparisons

Previous Quenched

New 2+1 Flavor

$\Delta I = 3/2$ Plateau

t

$\Delta I = 1/2$ Plateau - unsubtracted Q₆

t

$\Delta I = 1/2$ Plateau - $\overline{s}d$

Comparing $\Delta I = 1/2$ Plateau

Common fluctuations in Q_6 and \overline{sd}

$\Delta I = 1/2$ Subtraction

$\Delta I = 1/2$ Subtraction Coefficient Comparisons

$$\frac{\langle 0|Q_{i,\text{lat}}|K^0\rangle}{\langle 0|(\bar{s}\gamma_5 d)_{\text{lat}}|K^0\rangle} = \eta_{0,i} + \eta_{1,i} \left(m_s - m_d\right)$$

Previous Quenched

New 2+1 Flavor

Subtracting Q₆

Subtracting Q₆

Subtracted Q₆

Subtracted Q₆ Comparison

$$\langle \pi^+ | Q_{i,\text{lat}}^{(1/2)} | K^+ \rangle + \eta_{1,i} (m_s + m_d) \langle \pi^+ | (\bar{s}d)_{\text{lat}} | K^+ \rangle$$

Previous Quenched

New 2+1 Flavor

m_{res} and $\Delta S = 1$ matrix elements

- Spurion field Ω at midpoint represents residual χSB
- Transforms as $(\overline{3},3)$ under chiral symmetry
- For low energy observables, Ω goes to m_{res}
- For divergent quantities, new parameters enter which are $O(m_{res})$
- Due to unsupressed modes in 5-d, two powers of Ω can enter with the same size as a single power of Ω
- Higher order terms are a few percent effect and can be subtracted
- Discussed by Christ and Sharpe at DWF@10 meeting at BNL

$$\langle K^+|Q_6|\pi^+\rangle \sim \left\{\frac{(m+\Omega)}{a^3} + \frac{(m+\Omega)^3}{a^3}\right\} \langle K^+|\bar{s}d|\pi^+\rangle + \frac{\Omega}{a} \langle K^+|\bar{s}\sigma \cdot Fd|\pi^+\rangle$$

Chiral Perturbation Theory and ϵ'/ϵ

- Simulations will have a fixed, dynamical strange quark mass, which may be outside range of utility of NLO ChPT
- Lightest quark mass, m_s/10, may need finite volume corrections added to ChPT formula.
- 2+1 flavor partially quenched ChPT being done by Aubin, Laiho and Li
- (8,8) and (27,1) operators complete. (8,1) operators are well underway

ε'/ε Summary

- Have summarized RBC-UKQCD calculation of NLO coefficients from K -> π and K -> vacuum
- Work on K -> $\pi\pi$ at unphysical kinematics underway
- Lee and Sharpe are using ASQTAD staggered fermions, with smearings, to calculate B_K , B_7 and B_8 . Testing to see how much smearing can help with operator mixing
- Hernandez, et. al. are working in the epsilon regime (quenched) to explore $\Delta I = 1/2$ rule
- Lellouch, et. al. are using overlap fermions on lattices generated with 2 flavors of Wilson fermions to look at B_{κ} and ϵ'/ϵ .

Conclusions

- 2+1 flavor DWF QCD simulations well underway (3 fm)³ volumes at two lattice scales $m_l = m_s / 5$ on $a^{-1} = 1.6$ GeV lattices $m_l = m_s / 7$ on $a^{-1} = 2.1$ GeV lattices
- $\Delta S = 1$ matrix elements appear to be benefitting from large spatial volume, giving reduced statistical errors.
- From comparison of ChPT to data, we are investigating range of pseudoscalar masses where NLO ChPT is accurate to, say 10%.
- For ε'/ε , NLO fits for $\Delta I = 3/2$ amplitudes should work.
- For $\Delta I = 1/2$ amplitudes, statistical errors will likely limit NLO fits
- K -> $\pi\pi$, tests underway to get needed constant.
- Major systematic in final result likely ChPT
- Multiparticle final states a few years away...