Theory on Non-Leptonic and Radiative Kaon Decays

Joaquim Prades CERN, CAFPE and Universidad de Granada

22-05-07 KAON 2007 at Frascati

Theory onNon-Leptonic and Radiative Kaon Decays - p.1/27

Introduction: Motivation

- Introduction: Motivation
- Introduction: Theoretical Framework

- Introduction: Motivation
- Introduction: Theoretical Framework
- >>> Non-Leptonic Kaon Decays

- Introduction: Motivation
- Introduction: Theoretical Framework
- Non-Leptonic Kaon Decays
- **Radiative Kaon Decays**
 - $K \to \pi \gamma^* \to \pi l^+ l^-$: Status and Comments
 - Some Selected Topics

- Introduction: Motivation
- Introduction: Theoretical Framework
- » Non-Leptonic Kaon Decays
- **Radiative Kaon Decays**
 - $K \to \pi \gamma^* \to \pi l^+ l^-$: Status and Comments
 - Some Selected Topics

>>> Conclusions

Non-Leptonic and Radiative Kaon Decays: Goals

★ Measure Direct CP-Violation in Kaon Decays •

Experimentally well known in $K \rightarrow \pi \pi$: KTeV and NA48

$$\operatorname{Re}\left(\frac{\varepsilon'_{K}}{\varepsilon_{K}}\right) = (1.63 \pm 0.23) \cdot 10^{-3}.$$

Either <u>confirm</u> or <u>show deviations</u> from the SM •
 Understanding strong-weak dynamics interplay •

Introduction: Theoretical Framework

Perturbative Renormalization Group techniques & matching at heavy quark mass thresholds <u>Short – Distance information</u>

 \star Various choices of schemes, regulators. operator basis, ··· $\Gamma_{\Delta S=1}(C_i,\nu,\cdots)$ $=\sum C_i Q_i$ \star NLO in NDR, HV A. Buras et al.M. Ciuchini et al.

 M_W

 M_b

 M_c

 μ

Under control: model independent $\sqrt{}$

Introduction: Theoretical Framework

Standard Model $\Delta S = 1$ operators

$$Q_2 = \left[\bar{s}_{\alpha}\gamma^{\mu}(1-\gamma_5)u_{\alpha}\right]\left[\bar{u}_{\beta}\gamma_{\mu}(1-\gamma_5)d_{\beta}\right] \bullet$$

In the presence of QCD interactions: Q_1 , Q_3 , Q_4 , Q_5 and $Q_6 = [\bar{s}_{\alpha}\gamma^{\mu}(1-\gamma_5)d_{\beta}] \sum_{q} [\bar{q}_{\beta}\gamma_{\mu}(1+\gamma_5)q_{\alpha}] \bullet$ In the presence of EW interactions (non-leptonic decays): Q_7 , Q_9 , Q_{10} and $Q_8 = [\bar{s}_{\alpha}\gamma^{\mu}(1-\gamma_5)d_{\beta}] \sum_{q} \frac{3}{2} e_q [\bar{q}_{\beta}\gamma_{\mu}(1+\gamma_5)q_{\alpha}] \bullet$ In the presence of EW interactions (radiative decays): $Q_{7V(A)} = [\bar{s}_{\alpha}\gamma^{\mu}(1-\gamma_5)d_{\alpha}] [\bar{l}\gamma_{\mu}(\gamma_5)l] \bullet$

(Magnetic dipole operators Q_{11} and Q_{12} are very suppressed)

Non-leptonic: $K \to \pi\pi$ and $K \to \pi\pi\pi$ • <u>Radiative</u>: $K^0 \to \gamma\gamma$, $K^0 \to l^+l^-$, $K \to \pi l^+l^-$, $K \to \pi\gamma\gamma$, $K \to \pi\pi\gamma$, ... (and Dalitz pair conversion) •

ChPT describes interactions between pions, kaons, photons, \cdots

Matching: QCD in the Non-Perturbative regime

Lot of work and advances: Large N_c Methods, Lattice QCD

Non – Perturbative

★ Different degrees of freedom, operator basis <u>Long – Distance Part</u> **\bigstar** Regulator schemes \cdots <u> $\Gamma_{\text{ChPT}}(g_i, \mu, \cdots)$ </u>

Introduction: Theoretical Framework

Chiral Perturbation Theory (ChPT) is the effective field theory of the <u>Standard Model</u> at <u>low energies</u> • S. Weinberg; J. Gasser, H. Leutwyler

Most general Lagrangian with <u>symmetries</u> and relevant degrees of freedom ~ In general, predictions depend on unknown couplings •

★ Relate different decays with same unknowns • ★ If chiral loops finite and <u>no unknown counterterm</u> \Rightarrow parameter free predictions (e.g., $K_S \rightarrow \gamma\gamma$ or $K_L \rightarrow \pi^0\gamma\gamma$ at p^4) •

Long list of works applying ChPT to Kaon decays •

Introduction: Theoretical Framework

 $\Delta S = 0$: f_{π} and meson masses at LO; \tilde{C} , L_i at NLO, (Gasser, Leutwyler, · · ·) $\Delta S = 1$ at LO: G_E , G_8 , G'_8 and G_{27} in SU(3) [See Gérard, Smith, Trine for U(3)]

$$\mathcal{L}^{(2)}_{|\Delta S|=1} = CF_0^6 e^2 G_E \operatorname{tr}(\Delta_{32} u^{\dagger} Q u) + CF_0^4 \left[G_8 \operatorname{tr}(\Delta_{32} u_{\mu} u^{\mu}) + G_8' \operatorname{tr}(\Delta_{32} \chi_{+}) + G_{27} t^{ij,kl} \operatorname{tr}(\Delta_{ij} u_{\mu}) \operatorname{tr}(\Delta_{kl} u^{\mu}) \right] + \text{h.c.};$$

 Φ collects π , Kaon and η fields •

 $\Delta S = 1$ at NLO: N_i (Ecker, Kambor, Wyler; Kambor, Missimer, Wyler; Esposito-Farèse; Ecker, Pich, de Rafael; \cdots)

$K \to \pi \pi$ and ε'_K : Status

★ ChPT fully at NLO including isospin breaking √

\star Rôle of final state interactions clarified $\sqrt{}$

Kambor, Missimer, Wyler; Bijnens, Pallante, J.P.; Cirigliano, Donoghue, Holstein; Pich, Pallante, Scimemi; Cirigliano, Ecker, Isidori, Müller, Neufeld, Pich; ···

$$\Delta I = 1/2 \text{ rule}$$

<u>Fit to data</u> (Bijnens, Dhonte, Persson): $(G_8 = G_{27} = 1 \text{ at large } N_c)$

Re
$$G_8 = (7.0 \pm 0.6) \left(\frac{87 \text{MeV}}{F_0}\right)^4$$
; $G_{27} = (0.50 \pm 0.06) \left(\frac{87 \text{MeV}}{F_0}\right)^4$.

★ Advances in calculation of Re G_8 and G_{27} at NLO in $1/N_c$ • $\Delta I = 1/2$ rule within 40 % \checkmark Bijnens, J.P. ; Hambye, Peris, de Rafael

ε'_K fully at NLO in ChPT,

Re $(\varepsilon'_K / \varepsilon_K) \simeq - [(1.9 \pm 0.5) \text{ Im } G_8 + (0.34 \pm 0.15) \text{ Im } (e^2 G_E)].$

Im G_8 and Im $(e^2 G_E)$ are proportional to CP-violating phase Im $\tau \equiv -\text{Im}\frac{\lambda_t}{\lambda_u}$ $(\lambda_i \equiv V_{id}V_{is}^*)$

Contribution $\Delta S = 1$ NLO counterterms Im \tilde{K}_i estimated to be negligible •

★ Recently, lot of work calculating analytically $\text{Im}(e^2 G_E)$ • (Cirigliano, Donoghue, Holstein, Maltman; Bijnens, Gámiz, J.P.; Friot, Greynat, Knecht, Peris, de Rafael; Narison)

$$\bigstar$$
 and Im G_8 at NLO in $1/N_c \bullet$

(Bijnens, J.P.; Hambye et al; Hambye, Peris, de Rafael)

ε'_K Status: Theory vs Experiment

★ Large uncertainties in input parameters : quark condensate $(20\%)^2$, L_5 (30 %) •

$K \rightarrow 3\pi$: Dalitz Plot Slopes

CP-Conserving $K\to 3\pi$ ChPT fully at NLO \bullet

Kambor, Missimer, Wyler; Bijnens, Dhonte, Persson (including isospin breaking); Gámiz, J.P., Scimemi

Dalitz Plot Slopes

 $\frac{|A_{K^+ \to 3\pi}(s_1, s_2, s_3)|^2}{|A_{K^+ \to 3\pi}(s_{th}, s_{th}, s_{th})|^2} = 1 + gy + hy^2 + kx^2 + \mathcal{O}(yx^2, y^3).$

 $(x=(s_1-s_2)/m_{\pi^+}^2 \text{ and } y=(s_3-s_{th})/m_{\pi^+}^2 \text{ are Dalitz variables})$

★ <u>Prediction</u> for $K^+ \rightarrow \pi^+ \pi^- \pi^-$ and $K^+ \rightarrow \pi^0 \pi^0 \pi^+$ <u>slopes</u> in nice agreement with recent NA48/2, ISTRA+ and KLOE results •

$K^+ \rightarrow 3\pi$: **CP-Violating Asymmetries**

Direct CP-Violating Asymmetries in Dalitz plot slope g of $K^+ \rightarrow 3\pi$ amplitude •

$$\Delta g_C \equiv \frac{g[K^+ \to \pi^+ \pi^+ \pi^-] - g[K^- \to \pi^- \pi^- \pi^+]}{g[K^+ \to \pi^+ \pi^+ \pi^-] + g[K^- \to \pi^- \pi^- \pi^+]}$$
$$\Delta g_N \equiv \frac{g[K^+ \to \pi^0 \pi^0 \pi^+] - g[K^- \to \pi^0 \pi^0 \pi^-]}{g[K^+ \to \pi^0 \pi^0 \pi^+] + g[K^- \to \pi^0 \pi^0 \pi^-]}.$$

Start at $\mathcal{O}(p^2)$ in ChPT. [Analogous asymmetries for decay rates Γ .]

A lot of previous work: LO plus various NLO estimates.

B.Grinstein, et al. • A. Bel'kov, et al. • G. D'Ambrosio, et al. • E. Shabalin • [SUSY Contributions: G. Isidori, et al. •]

E. Gámiz, I. Scimemi, J.P. → First full NLO results in ChPT !

$K^+ \rightarrow 3\pi$: **CP-Violating Asymmetries**

Fully at NLO in ChPT, we get

$$\begin{aligned} \frac{\Delta g_C}{10^{-2}} &\simeq & (0.7 \pm 0.1) \, \mathrm{Im} G_8 - (0.07 \pm 0.02) \, \mathrm{Im} (e^2 G_E) \\ &+ & (4.3 \pm 1.6) \, \mathrm{Im} \tilde{K}_2 - (18.1 \pm 2.2) \, \mathrm{Im} \tilde{K}_3 \,, \\ \frac{\Delta g_N}{10^{-2}} &\simeq & - \left[(0.04 \pm 0.08) \, \mathrm{Im} G_8 + (0.05 \pm 0.02) \, \mathrm{Im} (e^2 G_E) \right. \\ &+ & (3.7 \pm 1.1) \, \mathrm{Im} \tilde{K}_2 + (26.3 \pm 3.6) \, \mathrm{Im} \tilde{K}_3 \right] \,. \end{aligned}$$

Using Im G_8 , Im (e^2G_E) from J. Bijnens, E. Gámiz, J.P.

and
$$\frac{\operatorname{Im} \tilde{K}_i}{\operatorname{Re} \tilde{K}_i} \cong \frac{\operatorname{Im} G_8}{\operatorname{Re} G_8} \simeq \frac{\operatorname{Im} G_8}{\operatorname{Re} G_8} \simeq (0.9 \pm 0.3) \operatorname{Im} \tau$$
,
 $\tau \equiv -\frac{V_{td} V_{ts}^*}{V_{ud} V_{us}^*}$.

Assumption. Ratio dominated by same dynamics at LO and NLO •

e'_K vs Δg_C : $\Delta g_C \sim -3.5 \times 10^{-5}$

ε'_K vs Δg_C : $\Delta g_C \sim -1 \times 10^{-5}$

$K^+ \rightarrow 3\pi$: **CP**-Violating Asymmetries

In the Standard Model,

 $\Delta g_C = -(2.4 \pm 1.2) \times 10^{-5}$

Other input values (large N_c , ...) are within errors Rest of asymmetries are extremely sensitive to <u>unknown counterterms</u>

First experimental results already appeared: Preliminary 2003+2004 NA48/2 $\Delta g_C = -(1.3 \pm 2.3) \times 10^{-4} \bullet \Delta g_N = (2.1 \pm 1.9) \times 10^{-4} \bullet$

(Calculations \rightleftharpoons Interesting uncertainty $\sim 0.3 \times 10^{-4} \bullet$)

As an example: status and comments

<u>ChPT</u> LO and NLO <u>dominant effects</u> analysis <u>done</u> $\sqrt{}$ and typically, <u>unknown couplings appear</u> •

<u>CP-conserving</u> $K^+ \to \pi^+ l^+ l^-$ and $K_S \to \pi^0 l^+ l^-$ measured $\sqrt{}$ Dominated by long-distance $K \to \pi \gamma^* \to \pi l^+ l^-$ •

One coupling governs form factor at LO in ChPT •

 $\begin{array}{ll} \underline{K^+ \to \pi^+ l^+ l^-} & \omega_+ \left[\mathcal{O}(N_c) \right] \text{ Ecker, Pich, de Rafael} \\ & \text{ or } a_+ \left[\mathcal{O}(N_c) \right] \text{ Ecker, D' Ambrosio, Isidori, Portolés} \\ & \text{ Included leading } p^6 \text{ improves fit } \bullet \end{array}$

Measured at BNL: $\omega_{+,e} = 1.49 \pm 0.02$ [sign(G₈) $a_{+,e} = -(0.59 \pm 0.01)$] •

$K_S \rightarrow \pi^0 l^+ l^-$:

Analogously, <u>one coupling</u> ($\mathcal{O}(1)$ in $1/N_c$) governs form factor • NA48/1 measured: $\omega_{S,e} = [2.53^{+0.56}_{-0.45}] [-(1.87^{+0.56}_{-0.45})] [|a_{S,e}| = 1.12^{+0.29}_{-0.23}] •$ HyperCP and NA48/1: compatible results for muons $\sqrt{}$

$K_L \rightarrow \pi^0 e^+ e^-$: CP-violating

Small CP-conserving $K_L \rightarrow \pi^0 \gamma^* \gamma^* \rightarrow \pi^0 e^+ e^- \sqrt{}$ Buchalla, D' Ambrosio, Isidori; Isidori, Smith, Unterdorfer

$K \to \pi \gamma^* \to \pi l^+ l^-$

$$Br(K_L \to \pi^0 e^+ e^-)|_{CPV} = \left[(2.38 \pm 0.10) \left[\hat{y}_{7A}^2 + (\hat{y}_{7V} + M_{6V})^2 \right] \left(\frac{\mathrm{Im}\lambda_t}{10^{-4}} \right)^2 + (3.91 \pm 0.08) \left(\omega_{S,e} - \frac{1}{3} \right) (\hat{y}_{7V} + M_{6V}) \left(\frac{\mathrm{Im}\lambda_t}{10^{-4}} \right) + (3.41 \pm 0.03) \left(\omega_{S,e} - \frac{1}{3} \right)^2 \right] \times 10^{-12}$$

$$\hat{y}_{7V,7A} \equiv \frac{y_{7V,7A}}{\alpha(M_Z)} ; \quad \frac{M_{6V}}{\hat{y}_{7V}} \equiv \frac{y_6 \langle Q_6 \rangle}{y_{7V} \langle Q_{7V} \rangle} = -(0.19 \pm 0.11) B_{6V} ;$$

$$\langle Q_6 \rangle |_{\text{FAC}}(\nu) = 32 \frac{\langle \overline{q}q \rangle^2(\nu)}{F_0^6} \left[2C_{63}^r - C_{65}^r \right] (M_\rho) ;$$

ChPT counterterm in K^0 EM charge radius Bijnens, Talavera $2C_{63}^r - C_{65}^r = (1.8 \pm 0.7) \, 10^{-5} \, (F_0/87 \, \text{MeV})^2$; KTeV, NA48, $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ Four-quark effective action calculation Bruno, J.P. $2C_{63}^r - C_{65}^r = (2.2 \pm 1.1) \, 10^{-5} \, (F_0/87 \, \text{MeV})^2$

$K \to \pi \gamma^* \to \pi l^+ l^-$

Prediction of interference term sign: Status

Gilman, Wise 1980:

 $sign(G_8) a_S^{Q_{7V}} \simeq 0.12 > 0 \quad \rightleftharpoons \quad \underline{Constructive}$

Buchalla, Isidori, D' Ambrosio 2003:

 $\frac{Q_{7V} \text{ VMD dominance in } a_S \text{ and large non-VMD in } a_+}{sign(G_8 \, a_S^{\text{VMD}, Q_{7V}}) = -sign(G_8 \, a_+^{\text{VMD}, Q_{7V}}) > 0 \quad \rightleftharpoons \quad \underline{\text{Constructive}}$

Friot, Greynat, de Rafael 2004:

Single pole large N_c inspired approximation fit (K^* and ρ)

 $\omega_{+} = 1.4 \pm 0.6 > 1/3;$ (sign(G₈) $a_{+} = -(0.5 \pm 0.3) < 0$) $\omega_{S} = -(2.1 \pm 0.2) < 1/3;$ (sign(G₈) $a_{S} = -(1.2 \pm 0.1) < 0$)

Destructive (sign erratum in interference term formula)

$K \to \pi \gamma^* \to \pi l^+ l^-$

Bruno, J.P. 1993 (updated L_9):

Four-quark effective action model at NLO in $1/N_c$: Q_1, \dots, Q_6, Q_{7V}

 $\omega_{+} = 1.9 \pm 0.8 > 1/3;$ (sign(G₈)a₊ = -(0.8 ± 0.4) < 0) $\omega_{S} = 1.7^{+1.3}_{-0.6} > 1/3;$ (sign(G₈)a_S = 0.7^{+0.7}_{-0.3} > 0) \rightleftharpoons Constructive

Constructive vs Destructive:

Experimentally from muon forward-backward asymmetry • Mescia, Smith, Trine; Donoghue, Gabbiani

Both, $K_L \rightarrow \pi^0 e^+ e^-$ and $K_L \rightarrow \pi^0 \mu^+ \mu^-$ necessary to disentangle new physics from SM (and long-distance from short-distance) • Mescia, Smith, Trine

Comments on Selected Topics

Recent developments:

• $K^+ \to \pi^+ \pi^0 \gamma$:

Direct electric emision - Bremßtrahlung interference Ecker, Pich, de Rafael; Bijnens, Ecker, Pich; Ecker, Neufeld, Pich; D'Ambrosio, Isidori; D'Ambrosio, Cappiello

NA48/2: <u>First time interference</u> is <u>measured</u> \Rightarrow <u>Destructive</u>

Theory expectations: Constructive ?

Again, sign of unknown coupling $? \rightleftharpoons More work is needed$!

See talk by D' Ambrosio at FLAVIAnet Kaon Mini-Workshop •

Comments on Selected Topics

- Interesting recent work on $U_A(1)$ anomaly effects in radiative modes using U(3) ChPT Gérard, Smith, Trine
- Better understanding of $K_L \rightarrow \gamma \gamma$ and $K_L \rightarrow \gamma l^+ l^-$
- Important for $K_L \rightarrow \mu^+ \mu^-$ dispersive $\gamma \gamma$ contribution •

And could give sizeable effects in $K_S \to \pi^0 \gamma \gamma$ and $K^+ \to \pi^+ \gamma \gamma \bullet$

More experimental input on these rare decays is very welcome •

<u>Goal</u>: Obtain <u>short-distance</u> (CP-violating phases) <u>information</u> and/or <u>understand</u> <u>strong-weak dynamics</u> interplay •

Need theoretical effort to predict unknown couplings •

Quoted recent analytic work in that direction is based in/or related to large N_c hadronic Ansatzs

Catà, Golterman, Knecht, Peris, de Rafael; Cirigliano, Ecker, Eidemüller, Kaiser, Portolés, Pich, Rosell, Sanz-Cillero; Bijnens, Gámiz, Lipartia, J.P., ···

Lattice proposals on rare kaon decays <u>appeared</u> Isidori, Martinelli, Turchetti Lattice progress on non-leptonic kaon decays: See Sachrajda's talk

Complementary and necesary: Use different modes to disentagle SM from new physics (and long-distance from short-distance) •

- ε'_K vs $K^+ \rightarrow 3\pi$ CP-violating asymetries
- $K_L \to \pi^0 e^+ e^- \text{ VS } K_L \to \pi^0 \mu^+ \mu^-$
- ε'_K VS $K_L \to \pi^0 e^+ e^-$
- ••••

With expected theory and experimental effort

Non-leptonic and radiative kaon decays
 will continue to give very nice and interesting
 results •