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Outline of Talk

Introduction

K → ππ Decays at Lowest Order in Chiral Expansion

I Reminder of the results of the RBC & CP-PACS Collaborations

Finite Volume Effects in K → ππ Decays

K → ππ Decays at NLO in Chiral Expansion

Miscellany

I Twisted Boundary Conditions and the Evaluation of δ ′(q∗).
I Rôle of the Charm Quark in the ∆I = 1/2 Rule.

Summary and Conclusions.

See also Bob Mawhinney’s Talk
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The ∆S = 1 Weak Hamiltonian

Heff (∆S = 1) =
GF√

2
VudV∗

us

10

∑
i=1

Ci(µ)Oi(µ)

Non-perturbative QCD effects are contained in the matrix
elements of the operators Oi(µ).

The challenge for the lattice community is to calculate the matrix
elements

〈ππ |Oi(µ) |K 〉 .
O1, O2 – Current-Current Operators
e.g. O2 = (s̄Lγµ uL)(ūLγµ dL) - charm

O3 – O6 – QCD Penguin Operators
e.g. O6 = (s̄ i

Lγµ dj
L) ∑q(q̄

j
Rγµ qi

R)

O7 – O10 – Electroweak Penguin Operators
e.g. O8 = 3

2 (s̄ i
Lγµ dj

L) ∑q eq (q̄ j
Rγµ qi

R) .
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Two-Particle States in a Finite Euclidean Volume

0

t2

t1

tK

~p = 0

~p = 0

~q

-~q

L.Maiani & M.Testa (1990) made the following two points about the computation of
K → ππ decays in Euclidean Space (in the CoM Frame):

At large times the correlator is dominated by the unphysical matrix
element with the two-pions at threshold;
In Euclidean space one obtains real quantities, such as

1
2

{

out〈ππ |HW |K 〉+ in〈ππ |HW |K 〉
}

.

Following the Maiani-Testa paper there was a break in the calculation of
matrix elements between multi-hadron states.
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Two-Particle States in a Finite Euclidean Volume – Cont.

Renewed interest was stimulated by L.Lellouch and M.Lüscher (2000) who:

argued that by tuning the volume, one is in principle able to extract the
matrix element corresponding to the physical kinematics for K → ππ
decays.

I The correlation function will still be dominated by the matrix
element with the two pions in the ground state (unphysical
kinematics), so one has to determine the coefficient of a
non-leading exponential.

I For a physical K → ππ decay with the kaon at rest and the energy
of the two-pions corresponding to n = 1 (the first excited state) for
periodic boundary conditions one needs a lattice of about 6 fm.

derived a formula relating the matrix elements in a finite volume to the
modulus of the physical decay amplitudes, up to exponential corrections
in the volume.

This is described below.
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LO Chiral Perturbation Theory

Chiral perturbation theory is widely used to extrapolate lattice results
computed at unphysically heavy values of mu,d to their physical values.

At Lowest Order in the Chiral Expansion one can obtain the K → ππ
decay amplitude from K → π and K → vacuum matrix elements.

In 2001, two collaborations published some very interesting (quenched)
results on non-leptonic kaon decays in general and on the ∆I = 1/2 rule and
ε ′/ε in particular:

Collaboration(s)
���

A0/
���

A2 ε ′/ε
RBC 25.3±1.8 −(4.0±2.3)×10−4

CP-PACS 9÷12 (-7÷ -2)×10−4

Experiments 22.2 (17.2±1.8)×10−4
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Re A0/Re A2 as a function of the meson mass.
CP-PACS
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ε ′/ε as a function of the meson mass.
CP-PACS
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Comments

Results from RBC and CP-PACS are very interesting and provide
valuable benchmarks for future calculations.

These collaborations were able to control the Ultraviolet Problem, i.e.
the subtraction of power divergences due to the mixing of operators in
the weak Hamiltonian and lower dimensional operators.

The simulations were quenched, and relied on the validity of lowest
order χPT in the region of approximately 400-800 MeV.

One natural suggestion is to improve the precision to NLO in the chiral
expansion.
This requires the evaluation of K → ππ decay amplitudes directly.

For ε ′/ε there is a significant partial cancellation from the ∆I = 1/2 and
∆I = 3/2 contributions. Does this amplify the relative errors?
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Finite-Volume Corrections for Two-Pion States

M.Lüscher (1986-91) derived the two-hadron spectrum in a finite-volume in
the rest frame.

K.Rummukainen and S.Gottlieb (1996) generalized the derivation of the
spectrum to a frame with non-zero momentum.

L.Lellouch & M.Lüscher (2000) derived the finite-volume corrections to K → ππ
matrix elements in the rest frame.

D.Lin, G.Martinelli, CTS & M.Testa (2001) rederived the spectrum (validating the
results beyond the first 7 states) and the LL formula, interpreting the
effects as being due to the density of two-pion states in a finite volume.

C.Kim, CTS & S.Sharpe (2005) and N.Christ, C.Kim & T.Yamazaki (2005) generalized all
the results to a moving frame.

See also S.Beane, P.Bedaque, A.Parreno and M.Savage (2004).

I now sketch the derivation of the results from the perspective of Kim, CTS,
Sharpe (2005).
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Finite-Volume Corrections for Two-Pion States
For two-particle states the finite-volume corrections decrease as powers of
the volume and not exponentially. They are numerically significant and hence
need to be controlled.

p

E

where E2 = 4(k2 +m2).

Performing the p0 integration by contours we obtain summations over
loop-momenta of the form:

1
L3 ∑

~p

f (p2)

p2− k2

where f (p2) is non-singular.

For simplicity I am assuming here that only the s-wave ππ phase-shift is
significant and that we are in the centre-of-mass frame. The generalization to
higher partial waves is technical but straightforward.
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1
L3 ∑

~p

f (p2)

p2− k2

The large finite-volume effects, i.e. those which decrease only as
powers of L, come from the difference between the momentum sums in
finite-volume and the corresponding integrals in infinite volume.

The required relation between the FV sums and infinite-volume integrals
is the Poisson Summation Formula, which in 1-dimension is:

1
L ∑

p
g(p) =

∞

∑
l=−∞

∫
dp
2π

eilLpg(p)

If g(p) is non-singular then only the term with l = 0 on the rhs
contributes, up to exponentially small terms in L.

From the above it follows that this is not the case for two-hadron final
states ⇒ finite-volume corrections ∼ 1/Ln.

For two-hadron final states we start with

1
L3 ∑

~p

f (p2)− f (k2)eα(k2−p2)

p2− k2 =
∫

d3p

(2π)3

f (p2)− f (k2)eα(k2−p2)

p2− k2 .

This is the key formula to understanding FV effects in two-pion states.
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1
L3 ∑

~p

f (p2)− f (k2)eα(k2−p2)

p2− k2 =
∫

d3p

(2π)3

f (p2)− f (k2)eα(k2−p2)

p2− k2 .

We rewrite the above formula as:

1
L3 ∑

~p

f (p2)

p2− k2 = P

∫
d3p

(2π)3

f (p2)

p2− k2 + f (k2)Z(k2)

where P represents principal value and

Z(k2) ≡ 1
L3 ∑

~p

eα(k2−p2)

p2− k2 −P

∫
d3p

(2π)3

eα(k2−p2)

p2− k2 .

This does not have the physical iε prescription and so we write

P

∫
d3p

(2π)3

f (p2)

p2− k2 =
∫

d3p

(2π)3

f (p2)

p2− k2− iε
− ik

4π
f (k2) .
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1
L3 ∑

~p

f (p2)

p2− k2 =
∫

d3p

(2π)3

f (p2)

p2− k2− iε

− ik
4π

f (k2)+ f (k2)

{

1
L3 ∑

~p

eα(k2−p2)

p2− k2 −P

∫
d3p

(2π)3

eα(k2−p2)

p2− k2

}

The finite-volume correction only depends on the function f evaluated at
the external energy corresponding to k2 .

The expression F ≡ Z − ik/(4π) is purely kinematical and can readily be
evaluated.

The FV correction exhibited above appears in every loop and we need
to resum these corrections (geometric series).

In infinite volume there is a cut with a branch point at the two-pion
threshold.
In finite volume the cut ⇒ series of poles. The positions of these poles
correspond to the allowed energy levels (Lüscher Quantization
Condition).
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Thus the lattice correlation function can be represented by:

A A′

F

+ A A′M

F F

+ A A′M M

F F F

+ · · · · · ·

where M is the physical ππ scattering amplitude and A and A′ are the matrix
elements of the operators used to prepare the two-pion states. F represents
the factor Z − ik/(4π).

Thus the correlation function is equal to the one in infinite volume +

−A′FA+A′F
iM
2

FA−A′F
iM
2

F
iM
2

FA+ · · · = A′F
1

1+ iMF/2
A ,

and the quantization condition corresponds to those values of E or k such that

1+
iMF

2
= 0.
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The quantization condition can be rewritten in terms of the s-wave
phase-shift δ as:

tan(δ (k2))=− tan[φ(k)]≡− k
4π

{

1
L3 ∑

~p

eα(k2−p2)

k2−p2 −P

∫
d3p

(2π)3

eα(k2−p2)

k2−p2

}−1

.

We have now generalized this to the case in which the two-pions have
non-zero momentum (~P say).
Rummukainen & Gottlieb (1996); Kim, CTS & Sharpe (2005); Christ, Kim & Yamazaki (2005)

Kim, CTS, Sharpe tan(δ (k∗)) = − tan[φ P(k∗)] =
k∗2

4π

[

c(k∗2)
]−1

with c(k∗2) ≡ 1
L3 ∑

~p

ω∗
p

ωp

eα(k∗2−p∗2)

k∗2−p∗2 − P

∫
d3p∗

(2π)3

eα(k∗2−p∗2)

k∗2−p∗2 .

Rummakainen, Gottlieb c(k∗2)→ 1
γL3 ∑

~p

1
k∗2− r2 with r2 =

1
γ2

(

p‖−
P
2

)2

+ p̃2
⊥ .

The two are equivalent (up to exponentially small terms)!

Non-Leptonic Decays Kaon 2007, Frascati, May 22nd 2007



Introduction LO in Chiral Expansion Finite-Volume Effects NLO in Chiral Expansion Miscellany Summary and Conclusions

Relation between Matrix Elements in Finite and Infinite Volume

|A|2 = V2 mKE2

k∗2

{

δ ′(k∗)+φ P ′

(k∗)
}

|M|2

where the ′ represents the derivative with respect to k∗.

A = ∞〈ππ;E,~P |HW(0)|K;~P〉∞ and M = V〈ππ;E,~P |HW(0) |K;~P〉V .

are the K → ππ matrix elements in infinite and finite volumes respectively and
the external states have energy and momentum (E,~P).

Kim, CTS, Sharpe (2005); Christ,Kim,Yamazaki (2005)

Preliminary results for ∆I = 3/2 K → ππ decays using this technique have
been presented using a quenched simulation on a course
lattice (a−1 = 1.3GeV). T.Yamazaki (for RBC), hep-lat/0509135, hep-lat/0610051.

We therefore have all the necessary techniques to control the finite-volume
effects in both the spectrum and in the matrix elements.

Similar issues and results also hold for other two-hadron states (e.g.
π −N and N −N).
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Summary

Finite volume effects for the two-pion spectrum and K → ππ amplitudes
understood in rest and moving frames.

I For I = 2 final states, there is now no barrier to calculating the
matrix elements precisely.

I For I = 0 ππ states we need to learn how to calculate the
disconnected diagrams with sufficient precision.
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∆I = 2 Transitions at NLO in the Chiral Expansion

At NLO in χPT for K → ππ matrix elements the generic structure is of the
form:

〈ππ|OW |K〉 = LO∗ (1+Logs)+NLO counterterms.

The Logs are calculable in one-loop χPT. The idea is to use lattice
computations of K → ππ matrix elements, for a range of masses and
momenta, in order to

determine the LO and NLO low-energy constants;

use these to determine the physical decay amplitudes.

Non-Leptonic Decays Kaon 2007, Frascati, May 22nd 2007
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Exploratory SPQR Simulation at NLO in the Chiral Expansion

We performed an exploratory quenched study with the SPQR kinematics,
obtaining the matrix elements of the EWP successfully:

Ph. Boucaud et al., hep-lat0412029

I=2〈ππ |O7(2GeV) |K0 〉 = (0.12±0.02)GeV3 and

I=2〈ππ |O8(2GeV) |K0 〉 = (0.68±0.09)GeV3

We were unable to determine the LEC’s for O4 sufficiently well to perform the
chiral extrapolation.

Finite-volume energy shift measurable.
√

Matrix Elements at simulated massed well determined.
√

NPR implemented successfully.
√

Quark masses too high for demonstrably reliable chiral extrapolation. ×
LL factor not implemented ×
Quenched Simulation. ×
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EWP at NLO in the Chiral Expansion

It is possible to evaluate the K → ππ matrix elements of the EWP
operators at NLO in χPT, by evaluating K → π and K → vacuum matrix
elements. Laiho & Soni

∆I = 3/2 K → ππ Matrix Elements (GeV3) from DWF with NF = 2 .

VERY PRELIMINARY, J.Noaki, Lattice 2005

Non-Leptonic Decays Kaon 2007, Frascati, May 22nd 2007
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Lack of Unitarity in Quenched QCD

In full QCD we have the following contribution to the ∆I = 1/2 decay
K̄0 → π+π−:

K̄0
π+

π−

u

ū

d
s

d̄

In the quenched theory this contribution is absent. This is achieved, e.g. by
introducing ghost-quarks (with the opposite statistics) to cancel the effect.
Internal particles are not the same as the external ones ⇒ FSI depend on the
operator.
Is there some meaningful way of overcoming this?

This effect is not present for ∆I=3/2 decays.

This effect is also present for partially quenched QCD, when mK > 2mπ .
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Hairpin Diagrams and Double Poles

As an example consider the following ∆I = 1/2 contribution to decay
K̄0 → π+π− in quenched QCD:

K̄0

π+

π−

u

u d
s

d̄
⇒

η ′

η ′

K̄0

π+

π−

u u d
s

d̄

Qualitatively the η ′ propagator is rewritten as the first two terms of the pion
propagator.
Double Pole ⇒ more singular long-distance behaviour.

At one-loop order in the chiral expansion there are no such contributions to
∆I = 3/2 transitions.

Non-Leptonic Decays Kaon 2007, Frascati, May 22nd 2007



Introduction LO in Chiral Expansion Finite-Volume Effects NLO in Chiral Expansion Miscellany Summary and Conclusions

Phase-Shifts from Finite-Volume Effects

0 0.08 0.16 0.24 0.32
p

2
[GeV

 2
]

����

����

����

����

�� �

����

��

0

continuum limit
ACM(A) data
ACM(B) data
Losty et al. data

δ(p)(degrees)

Comparison of the Nf = 2 lattice results for the I=2 Scattering Phase Shift
δ (p) with experiments.

CP-PACS Collaboration, T.Yamazaki et al. hep-lat/0402025
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(Partially) Twisted Boundary Conditions and the Lellouch-Lüscher Factor.

The Lellouch-Lüscher factor relating the K → ππ matrix elements in
finite-volume to the physical decay amplitudes contains the derivative of
the phase-shift.

The phase-shift can be determined from the two-particle spectrum in
finite-volume, but only at discrete momenta.

Typical Example:

L = 24a with a−1 = 2GeV ⇒ 2π
L

= .52GeV

Momentum resolution is very poor!

Using twisted boundary conditions

q(xi +L) = eiθi q(xi)

the momentum spectrum is modified (relative to periodic bcs)

pi = ni
2π
L

+
θi

L
.
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For quantities which do not involve Final State Interactions (e.g.
masses, decay constants, form-factors) the Finite-Volume corrections
are exponentially small also with Twisted BC’s. CTS & G. Villadoro (2004)

Moreover they are also exponentially small for partially twisted boundary
conditions in which the sea quarks satisfy periodic BC’s but the valence
quarks satisfy twisted BC’s. CTS & G. Villadoro (2004); Bedaque & Chen (2004)

We do not need to perform new simulations for every choice of {θi}.

The technique can also be applied to evaluate δ ′(q∗2) for I = 2 decays.
C.Kim & CTS (preliminary)

I Consider the propagation of two π+ mesons with momenta θ/L
and (θ −2π)/L, where we can vary θ .

I From the spectrum we can determine δ (q∗2), where q∗ is the
corresponding centre-of-mass relative momentum.

I Since θ can be varied with small intervals, we can evaluate δ ′(q2).

Exploratory results from a DWF simulation at Nf = 2+1 (UKQCD/RBC
Configurations) .
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Energy Shift as a Function of q∗
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Phase-Shift and Lellouch-Lüscher Factor
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Rôle of the Charm Quark in the ∆I = 1/2 Rule
There is a suggested procedure to study the rôle of the charm quark in the
∆I = 1/2 rule. L.Giusti, P.Hernández, M.Laine, P.Weisz and H.Wittig, hep-lat/0407007

P.Hernández, hep-lat/0610129, L.Giusti et al., hep-ph/0607220.

Step 1: SU(4) or GIM limit. mc = ms = mu = md � ΛχPT.
Two LECs, g+ and g−, which have been evaluated by matching a
quenched QCD simulation with χPT

g+ = 0.51±0.09 and g− = 2.6±0.5 ⇒ A0

A2
=

1√
2

(

1
2

+
3g−

2g+

)

' 6.

These authors conclude that: Even though the enhancement is not large
enough to match the experiment, it already indicates that penguin
operator/contractions cannot be the whole story.

Step 2: ΛχPT � mc � ms = mu = md.
The matching to this effective theory can be done analytically. This has
been done at LO but unfortunately NLO couplings are needed to have
predictability.

Step 3: mc ≥ ΛχPT � ms = mu = md.
For the future.
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Summary and Conclusions

There has been a considerable amount of theoretical progress in
formulating K → ππ decays in a form suitable for lattice simulations.

There is the opportunity of achieving significant numerical results for
K → ππ decay amplitudes.

I For I = 2 final states, there is now no barrier to calculating the
matrix elements precisely.

I For I = 0 ππ states we need to learn how to calculate the
disconnected diagrams with sufficient precision.
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It would be interesting to repeat the RBC/CP-PACS LO χPT study in
unquenched simulations and at lower masses. This is underway – see
Bob Mawhinney’s talk.

Is it possible to approach non-leptonic B-decays in lattice simulations?
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