Lepton Universality Tests with Kaons

Rainer Wanke

Institut für Physik, Universität Mainz

for the

Flavianet Working Group on Kaon Decays

KAON 2007

Frascati, May 24, 2007

Flavianet Kaon Working Group

http://www.lnf.infn.it/wg/vus/

Kaon WG home FlaviaNet home			News Talks
			Acknowledgemen
Master Formulae	ISTRA+:		
Branching Ratios	Oleg Yushchenko (Protvino)		
Lifetimes	Vladimir Obraztsov (Protvino)		
Form Factors		Theory:	
	KLOE:	Johan Bijnens (Lund)	
Radiative	Matthew Moulson (Frascati) web contact	Vincenzo Cirigliano (Los Alamos)	
Corrections	<u>Patrizia De Simone (Frascati)</u>	Juerg Gasser (Bern)	
SU(3) Breaking		Claudio Gatti (Frascati) Richard Hill (ENAL)	
Form Factors	KTeV:	Federico Mescia (Frascati) web contact	
	<u>Sasha Glazov (DESY)</u>	Jan Stern (Orsay)	
Contacts	NA 40.		
	NA48: Bainer Wanke (Uni, Mainz)		
	Michele Veltri (Uni, Urbino)		
	Mauro Piccini (CERN)		

Introduction & Outline

Violation of Lepton Universality:

Predicted by practically every **New Physics** model.

Kaon physics:

Two main possibilites to test Lepton Universality:

 \mathbf{K}_{12} decays

 $K_{e2}/K_{\mu 2}$

 $\mathbf{K_{e3}}/\mathbf{K}_{\mu\mathbf{3}}$, form factors

So far precisions poor (compared to e.g. pion decay), tests on levels of 1-2% (K_{l3}) or even 4% ($K_{e2}/K_{\mu2}$).

Since \sim 2005: Many new data available (blue: first reported at KAON07)

KLOE $(K_{e3}^{\pm}, K_{\mu3}^{\pm}, K_{L,l3}$ form factors), ISTRA+ (K_{e3}^{-}) , NA48 $(K_{e3}^{\pm}, K_{\mu3}^{\pm}, K_{L,\mu3}$ form factors).

K_{e2}/K_{μ 2}: 2× NA48/2, KLOE.

K_{l3} — Introduction

Expectations in for LFV in K_{13} :

 \implies To be compared with searches for LFV in τ decays:

 $\tau \rightarrow \mathbf{e}\nu\overline{\nu}/\tau \rightarrow \mu\nu\overline{\nu} \implies \mathbf{g}_{\mu}^{2}/\mathbf{g}_{e}^{2} = \mathbf{0.9998} \pm \mathbf{0.0040}$

SM transitions proceed via tree-level diagrams: Possible violations of Lepton Universality from

New Physics will always be small.

 \implies Precision measurements necessary!

Two possibilities to search for violation of Lepton Universality:

- Deviation of $\Gamma(\mathbf{K}_{\mu\mathbf{3}})/\Gamma(\mathbf{K}_{\mathbf{e}\mathbf{3}})$ from SM prediction.
- Possible differences in form factors between $K_{\mu3}$ and K_{e3} .

K_{l3} Widths and Lepton Universality

K_{13} master formula:

 $\Gamma(\mathbf{K}_{\mathbf{l3}(\gamma)}) = \frac{\mathbf{G}_{\mathbf{F}}^{2}\mathbf{m}_{\mathbf{K}}^{5}}{\mathbf{102}\pi^{3}}\mathbf{C}_{\mathbf{K}}^{2}\mathbf{S}_{\mathbf{EW}}|\mathbf{V}_{\mathbf{us}}|^{2}|\mathbf{f}_{+}(\mathbf{0})|^{2}\mathbf{I}_{\mathbf{K}}^{l}(\mathbf{1}+\delta_{\mathbf{K}}^{l})^{2}$

with: $\mathbf{C}_{\mathbf{K}}^2 = \mathbf{1}$ for K^0 , $= \frac{1}{2}$ for K^{\pm} . $S_{EW} = 1.0232$: short-distance EW correction. hadronic matrix element at $q^2 = 0$ (different for K^{\pm} , K^0). $f_+(0)$: $\mathbf{I}_{\mathbf{K}}^{l} = \mathbf{I}_{\mathbf{K}}^{l}(\lambda_{+}, \lambda_{\mathbf{0}})$: integral of form factors over phase space. $(1 + \delta_{\mathbf{K}}^{\mathbf{l}})^{\mathbf{2}} \approx 1 + 2\delta_{\mathbf{SU}(\mathbf{2})}^{\mathbf{l}} + 2\delta_{\mathbf{EM}}^{\mathbf{l}}$: form factor corrections for SU(2) breaking and long-distance EM interactions.

Lepton flavour independent: C_K , S_{EW} , $\delta_{SU(2)}^l$

Lepton flavour dependent: $I_{K}^{l}, \delta_{EM}^{l}$

In case of Lepton Non-Universality:

$$\mathbf{G}_{\mathbf{F}}^{\mu}
eq \mathbf{G}_{\mathbf{F}}^{\mathbf{e}}$$

K_{l3} Widths and Lepton Universality

EM corrections are small

(Cirigliano et al. (2002), updated by Cirigliano, Neufeld; errors are taken as uncorrelated [has to be improved].)

	$\delta_{\mathbf{EM}}^{\mathbf{e}}$ [%]	$\delta^{\mu}_{{f E}{f M}}$ [%]	$({f 1}+\delta^{\mu}_{f K})^{f 2}/({f 1}+\delta^{f e}_{f K})^{f 2}$
K ⁰ ₁₃	+0.52(10)	+0.80(15)	1.006(4)
$\mathbf{K_{l3}^{\pm}}$	+0.03(10)	-0.12(15)	0.997(4)

Phase space corrections are large and depend on form factor slopes λ'_+ , λ''_+ , λ_0 .

Use form factor values from global Flavianet fit

(assuming lepton universality in the slopes and taking correlations into account).

	$\mathbf{I}^{\mathbf{e}}_{\mathbf{K}}$	$\mathbf{I}^{\mu}_{\mathbf{K}}$	${f I}^{\mu}_{f K}/{f I}^{f e}_{f K}$
$\mathbf{K}_{\mathbf{L},\mathbf{l3}}$	0.15454(29)	$\mathbf{0.10209(31)}$	0.6617(16)
$\mathbf{K_{l3}^{\pm}}$	0.15889(30)	$\mathbf{0.10504(32)}$	0.6611(16)

*K*_{l3} Widths and Lepton Universality

Standard Model expectation:

$$\mathbf{R}_{\mathbf{K}\mu\mathbf{3}/\mathbf{Ke3}} \equiv \frac{\Gamma(K_{\mu3})}{\Gamma(K_{e3})} = \left(\frac{G_F^{\mu}}{G_F^{e}}\right)^2 \frac{I_K^{\mu}}{I_K^{e}} \frac{(1+\delta_K^{\mu})^2}{(1+\delta_K^{e})^2} = \begin{cases} \mathbf{0.6657(31)} & K_L \\ \mathbf{0.6591(31)} & K^{\pm} \end{cases}$$

(Comparable uncertainties from I_K estimation and EM corrections.)

Parameter for Lepton Universality violation:

$$\mathbf{r}_{\mu\mathbf{e}} = \frac{(R_{K\mu3/Ke3})_{\text{obs}}}{(R_{K\mu3/Ke3})_{\text{SM}}} = \frac{\Gamma(K_{\mu3})}{\Gamma(K_{e3})} \frac{I_K^e}{I_K^\mu} \frac{(1+\delta_K^e)^2}{(1+\delta_K^\mu)^2} = \frac{\mathbf{G}_{\mathbf{F}}^\mu}{\mathbf{G}_{\mathbf{F}}^\mathbf{e}}$$

Situation with 2004 data (using current form factor slopes and EM corrections):

- K^{\pm} modes: $\mathbf{r}_{\mu \mathbf{e}}^{\pm} = \mathbf{1.019(13)}$
- K_L modes: $\mathbf{r}_{\mu \mathbf{e}}^{\mathbf{L}} = \mathbf{1.054(15)}$
- \implies Intriguing deviation from Unity?!

(Compare with $\tau \rightarrow l \nu \bar{\nu}$: $g_{\mu}^2/g_e^2 = 0.9998(40)$)

Direct Measurements on

 $\Gamma(K_{\mu3})/\Gamma(K_{e3})$

	Channel	$\Gamma(\mathbf{K}_{\mu3})/\Gamma(\mathbf{K_{e3}})$	
KTeV (PRL 93, 2004)	KL	0.6640 ± 0.0026	
KEK-E246 (PLB 513, 2001)	\mathbf{K}^+	0.671 ± 0.011	Using stopped kaons.
NA48/2 (EPJC 50, 2007)	\mathbf{K}^{\pm}	$\boldsymbol{0.663 \pm 0.003}$	EPJ value corrected at KAON07.
KLOE (prelim. 2007)	\mathbf{K}^{\pm}	$\boldsymbol{0.6511 \pm 0.0087}$	
SM expectation KEK-E246 (2001) NA48/2 (2007), corr.			

Global Flavianet fit to all Kaon data

Includes: All K^{\pm} , K_L , K_S BR's, form factor slopes, lifetimes.

 \implies M. Palutan, KAON07

κ_{L,S}

18 input measurements:

5 KTeV ratios NA48 K_{e3} /2t and Γ(3π⁰) **4 KLOE** BRs KLOE, NA48 π⁺π⁻/ K_{l3} KLOE, NA48 γγ/3π⁰ PDG ETAFIT for π⁺π⁻/π⁰π⁰ KLOE τ_L from 3π⁰ Vosburgh '72 τ_L

1 constraint: ΣBR=1

K+-

31 input measurements:

5 older τ values in PDG 2 KLOE τ KLOE BR($\mu\nu$) KLOE Ke3, $K\mu3$ BRs ISTRA+ $K_{e3}/\pi\pi^0$ NA48/2 $K_{e3}/\pi\pi^0$, $K_{\mu3}/\pi\pi^0$ E865 K_{e3}/K dal 6 Chiang '72 BRs 3 old $\pi\pi^0/\mu\nu$ 2 old Ke3/2 body 3 $K\mu3/Ke3$ (2 old)

2 old + 1 KLOE results on 3π

+ form factor slopes

Determination of $\Gamma(K_{\mu3})/\Gamma(K_{e3})$

■ K[±] modes: $\mathbf{r}_{\mu e}^{\pm} = 1.0059(87)$ (was 1.019(13) before) Error dominated by experiments (incl. scale factors). ■ K_{L,S} modes: $\mathbf{r}_{\mu e}^{L,S} = 1.0039(56)$ (was 1.054(15) before) Similar errors from experiments and knowledge on δ_{EM} . ■ Combination of both modes: $\mathbf{r}_{\mu e} = 1.0045(50)$ (taking into account $\rho = 0.12$) \Rightarrow No indication of Lepton universality violation.

Conclusions on $\Gamma(\mathbf{K}_{\mu \mathbf{3}})/\Gamma(\mathbf{K}_{\mathbf{e}\mathbf{3}})$:

- Kaon sensitivity coming closer to τ decays! $((g_{\mu}^2/g_e^2)_{\tau \to l\nu\bar{\nu}} = 0.9998(40))$
- Experimental (BR, ff's) and theoretical errors (δ_{EM}) comparable.

K_{l3} — Form Factors

\mathbf{K}_{13} form factors:

 K_{l3} matrix element:

 $\mathcal{M} \propto \mathbf{f_+}(\mathbf{q^2})(\mathbf{p_K} + \mathbf{p_{\pi}})^{\mu} \mathbf{\bar{u}_l} \gamma_{\mu} (\mathbf{1} + \gamma_5) \mathbf{u_v} + \mathbf{f_-}(\mathbf{q^2}) \mathbf{m_l} \mathbf{\bar{u}_l} \gamma_{\mu} (\mathbf{1} + \gamma_5) \mathbf{u_v}$

$$\label{eq:scalar} \mbox{form factor:} \ \ f_0(q^2) = f_+(q^2) + \frac{q^2}{m_K^2 - m_\pi^2} f_-(q^2)$$

Linear/quadratic expansion:

$$f_{+}(q^{2}) = f_{+}(0) \left(1 + \lambda'_{+} \frac{q^{2}}{m_{\pi^{+}}^{2}} + \frac{1}{2} \lambda''_{+} \frac{q^{4}}{m_{\pi^{+}}^{4}} \right)$$
$$f_{0}(q^{2}) = f_{+}(0) \left(1 + \lambda_{0} \frac{q^{2}}{m_{\pi^{+}}^{2}} \right)$$

(Not necessarily the best — but used by all experiments.)

Current Data on K_{l3} form factor slopes:

	Channel	$\lambda'_+ \times 10^3$	$\lambda_+^{\prime\prime} \times 10^3$	$\lambda_0 \times 10^3$
KTeV 2004	K _L e3	21.7 ± 2.0	2.9 ± 0.8	
	$\mathbf{K_L} \mu 3$	17.0 ± 3.7	4.4 ± 1.5	12.8 ± 1.8
KLOE 2006	$K_L e3$	25.5 ± 1.8	1.4 ± 0.8	
KLOE prel.	$\mathbf{K_L} \mu 3$	with $K_L e3$	with $K_L e3$	15.6 ± 2.6
NA48 2004	$K_L e3$	28.0 ± 2.4	0.4 ± 0.9	
NA48 2007	$\mathbf{K_L} \mu 3$	16.8 ± 3.3	4.0 ± 1.4	9.1 ± 1.4
ISTRA 2004	K ⁻ e3	24.9 ± 1.7	1.9 ± 0.9	
ISTRA 2004	$\mathbf{K}^{-}\mu3$	23.0 ± 6.4	2.3 ± 2.3	17.1 ± 2.2

(KLOE $K_{\mu3}$ data not used due to combined fit with K_{e3} .)

K_{l3} — Form Factor Slopes

Ke3 fit

30

 λ_{+} ' \times 10⁻³

K_{l3} — Form Factor Slopes

$K_{\mu3}$ slopes only:

 $egin{aligned} \lambda_+' &= (\mathbf{22.0} \pm \mathbf{2.2}) imes \mathbf{10^3} \ \lambda_+'' &= & (\mathbf{2.3} \pm \mathbf{0.9}) imes \mathbf{10^3} \ \lambda_\mathbf{0} &= & (\mathbf{13.5} \pm \mathbf{2.1}) imes \mathbf{10^3} \end{aligned}$

Agreement with K_{e3} poor, mostly driven by NA48/2 value on λ_0 .

K_{l3} — Form Factor Slopes

Excluding NA48 $K_{L,\mu 3}$ from the fit:

Right-handed currents in the quark sector:

(Bernard, Oertel, Passemar, Stern, PLB 638 (2006). \implies Talks Passemar, Stern, KAON07)

Charged current interaction:

$$\mathcal{L}_{CC} = \tilde{g} \left[l_{\mu} + \frac{1}{2} \begin{pmatrix} u \\ c \\ t \end{pmatrix} \left(\mathcal{V}_{\text{eff}} \gamma_{\mu} + \mathcal{A}_{\text{eff}} \gamma_{\mu} \gamma_{5} \right) \begin{pmatrix} d \\ s \\ b \end{pmatrix} \right] W^{\mu} + \text{h.c.}$$

Standard Model: $V_{eff} = -A_{eff} = V_{CKM}$

Absence of right-handed CC well-tested in the lepton sector. *However:* Need not to be the same in the quark sector.

No stringent tests of right-handed quark couplings so far!

$K_{\mu3}$ Decays:

In the chiral limit: Normalized scalar form factor $f_0(q^2)/f_+(0)$ known at the Callan-Treiman point $q^2 = \Delta_{K\pi} = m_K^2 - m_\pi^2$ from BR measurements.

RH currents would cause a deviation.

■ $\ln C = \ln f(\Delta_{K\pi})$ can be measured using dispersive approach for form factor parametrization.

Conclusions on Right-Handed Quark Currents:

- **NA48** sees effect ($\sim 5\sigma$) in $K_{\mu3}$ at the Callan-Treiman point.
- No other experiment has (yet) performed a fit with dispersive parametrization.
- However: Other experiments disagree NA48 (2007) with NA48 in slope λ_0 of scalar form factor. KLOE (2007), prel. Correlation between λ_0 and $\ln C$ unclear.
- Data of other experiments need to be investigated.

$$\mathbf{K_{e2}}/\mathbf{K_{\mu 2}}$$

$K_{e2}/K_{\mu 2}$ — Introduction

Standard Model Prediction:

R_K = $\Gamma(\mathbf{K_{e2}})/\Gamma(\mathbf{K_{\mu 2}})$ text book exercise for helicity suppression, but must include radiative corrections: (M. Finkemeier, PLB 387 (1996))

 $\mathbf{R_K} = R_K^{(0)} (1 + \delta R_K^{\text{rad.corr.}}) = 2.569 \times 10^{-5} \times (0.9622 \pm 0.0004)$ $= (2.472 \pm 0.001) \times 10^{-5}$

 \implies SM prediction has precision of 0.04%!

<u>Caveat:</u> Radiative corrections model dependent (VMD). More thorough χ PT study underway (Cirigliano).

Possibilities for non-SM Physics in $\mathbf{K_{e2}}/\mathbf{K_{\mu 2}}$:

 \blacksquare K_{e2} is strongly suppressed and extremely well-known in the SM

- \implies Non-SM effects *a priori* are easier to detect than in e.g. K_{l3} .
- SUSY: LFV H^{\pm} couplings may enhance/lower SM K_{e2} decay width by up to 2 3%.

(Masiero, Paradisi, Petronzio (2006) \implies P.Paradisi, KAON07)

 $K_{e2}/K_{\mu 2}$ — Measurements

PDG 2006: Three measurements from the 1970's $\Gamma(K_{e2})/\Gamma(K_{\mu 2}) = (2.45\pm0.11) imes10^{-5}$

Three new preliminary measurements:

NA48/2 (2003 data), presented in 2005:

- About 4000 signal events from normal running period.
- Systematics dominated by trigger efficiencies.

 $\Gamma(K_{e2})/\Gamma(K_{\mu 2}) = (2.416 \pm 0.043 \pm 0.024) imes 10^{-5}$

NA48/2 (2004 data), presented at KAON07:

- About 4000 signal events from special minimum bias trigger.
- Small systematics, except background. (measured from data → large statistical uncertainty in syst. error.)

Completely uncorrelated with 2003 measurement.

 $\Gamma(K_{e2})/\Gamma(K_{\mu 2}) = (2.455 \pm 0.045 \pm 0.041) imes 10^{-5}$

 $K_{e2}/K_{\mu 2}$ — Measurements

KLOE, presented at KAON07:

- About 8000 signal events from 1.7 fb^{-1} .
- Statistics dominated by MC, conservative systematics estimation.

 $\Gamma({f K_{e2}})/\Gamma({f K_{\mu 2}}) = (2.55\pm0.05\pm0.05) imes10^{-5}$

Treatment of radiative corrections:

- SM prediction includes IB, excludes DE.
- All experiments measure inclusive $\Gamma(K_{e2(\gamma)})/\Gamma(K_{\mu 2(\gamma)})$, but correct for DE contributions.
- \implies Can easily be combined and compared with SM expectation.

Combine all preliminary results and PDG2006:

 $\Gamma({f K_{e2}})/\Gamma({f K_{\mu 2}}) = (2.457 \pm 0.032) imes 10^{-5}$

 $(\chi^2/n_{
m dof}=2.44/3)$

Huge improvement w.r.t PDG 2006, $\sigma_{rel.} = 1.3\%$ now!

Perfect agreement with SM expectation.

$K_{e2}/K_{\mu 2}$ — **Restrictions on New** Physics

Limit on LFV in H^{\pm} coupling:

(Masiero, Paradisi, Petronzio, PRD 74, 2006)

LFV Yukawa coupling:

$$l\mathbf{H}^{\pm}\nu_{\tau} \rightarrow \frac{\mathbf{g_2}}{\sqrt{2}} \frac{\mathbf{m}_{\tau}}{\mathbf{M_W}} \, \Delta_{\mathbf{13}} \, \tan^2 \beta$$

Lepton-flavour violating term: Δ_{13} (should be $\leq 10^{-3}$ from EW theory, but $\neq 0$)

Limit on LFV in K_{e2} converts to limit on $\Delta_{13} = \Delta_{13}(M_{H^{\pm}}, \tan \beta)$:

$$\mathbf{R}_{\mathbf{K}}^{\text{LFV}}\approx\mathbf{R}_{\mathbf{K}}^{\text{SM}}\left[1+\left(\frac{\mathbf{m}_{\mathbf{K}}^{4}}{\mathbf{M}_{\mathbf{H}^{\pm}}^{4}}\right)\left(\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{M}_{\mathbf{e}}^{2}}\right)|\boldsymbol{\Delta}_{13}|^{2}\text{tan}^{6}\,\boldsymbol{\beta}\right.$$

$K_{e2}/K_{\mu 2}$ — Comparison with $B \rightarrow \tau \nu_{\tau}$

$\mathbf{B}^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$ Decays: Also in $\mathbf{B}^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$: Possible transition via H^{\pm} , sensitivity to $M_{H^{\pm}}$, $\tan \beta$. No LFV required \implies No Δ_{13} term Dependency on $M_{H^{\pm}}$, tan β : (Isidori, Paradisi, PLB 639, 2006) $\frac{\mathsf{Br}_{\mathsf{SUSY}}}{\mathsf{Br}_{\mathsf{SM}}} = \left[1 - \left(\frac{m_B^2}{M_{tr+}^2}\right) \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right]^2$ $(\epsilon_0 \sim 0.01)$ For non-tiny Δ_{13} : Sensitivity to H^{\pm} in $K_{e2}/K_{\mu 2}$ better than in $\mathbf{B} \to \tau \nu_{\tau}$!

$K_{e2}/K_{\mu 2}$ — Near Future

KLOE:

- Has $\sim 20\%$ more data on tape.
- Another ~ 3000 events with other reconstruction method.
- Improve MC statistics & systematics
- \implies Should arrive at $\sigma_{rel}(\mathbf{R}_{\mathbf{K}}) \sim \pm 1\%$.
- **P-326:** (also known as NA48/3)
 - Similar setup as for NA48/2 (2004) prel. measurement, use of most parts of existing NA48 apparatus.
 - Plan: 4 months (June-October 2007) run period
 - \implies Collect ~ 150 000 K_{e2} decays.
- \implies Goal to reach $\sigma_{\rm rel}({f R}_{f K}) \sim \pm 0.3\%$.

$K_{e2}/K_{\mu 2}$ — *P-326 run 2007*

60 GeV/ $c \rightarrow$ 75 GeV/c

Beam parameters 2007 optimized for $K_{e2}/K_{\mu 2}$ w.r.t. 2004:

- Kaon mean momentum *p*:
- Kaon momentum bite $\Delta p/p$: $\pm 3 \text{ GeV}/c \rightarrow \pm 2.5 \text{ GeV}/c$
- p_T kick from spectrometer magnet: 120 MeV/ $c \rightarrow$ 263 MeV/c

 \implies Improved kinematic separation of $K_{e2}!$

Minimum bias trigger:

- for $\mathbf{K_{e2}}$: Hodoscope hits + min. energy in the LKr - for $\mathbf{K_{\mu 2}}$ (downscaled):

Just hodoscope ($\epsilon > 99\%$)

Experience from 2004 run:

Systematics under control. Only systematic > 0.2%: Background to K_{e2} , error is statistical.

Sourse	Preliminary	Relative error
Ke2 sample statistics		1.85%
Kmu2 sample statistics	0.05%	
E/p correction for the electrons	0.18%	
E/p correction for the electrons	0.16%	
E/p correction for the muons (I	Negligible	
Trigger efficiency	0.3%	
MC statistics Ke2	0.3%	
Acceptance systematics	0.07%	
Radiative corrections	0.12%	
Muons with E/p>0.95 flatness	0.2%	
Background subtraction		1.59%
Total statistical error	<u>1.85%</u>	
Total systematics error		<u>1.66%</u>

V. Kozhuharov, KAON07

$K_{e2}/K_{\mu 2}$ — *P-326 run 2007*

Background to K_{e2} :

Mainly $K_{\mu 2}$ in K_{e2} sample.

 $\mathbf{p}_{\mathsf{track}} < \mathbf{35} \; \mathsf{GeV}/c$: (~ $\mathbf{43}\%$)

Kinematic separation

Build $M_{\rm miss}^2$ under *e*-assumption.

$$\mathbf{p}_{\mathsf{track}} > \mathbf{35} \; \mathsf{GeV/}c$$
: ($\sim \mathbf{57\%}$)

Electron identification

Require electron-ID from $E_{\rm Lkr}/p_{\rm track}$.

 $K_{e2}/K_{\mu 2}$ — *P-326 run 2007*

Problem at high momenta:

- Catastrophic energy-loss of $\sim 5 \cdot 10^{-6}$ of muons in the LKr.
 - \implies mis-identified as electrons.
- Solution:

Lead bar between hodoscope planes in front of LKr, covering $\sim 18\%$ of acceptance

 \implies Only μ pass, E/p measured in LKr.

 $K_{e2}/K_{\mu 2}$ — Expectations

KAON09 ?! same R_K central value

Rainer Wanke, Universität Mainz, KAON 2007, Frascati, May 24, 2007 – p.31/32

Conclusions

\mathbf{K}_{13} Decays:

- New BR results agree with SM expectation on 0.5% level. Theoretical uncertainties start to be important.
- Indication for non-SM couplings from NA48 $K_L\mu$ 3 decays needs to be investigated with data of other experiments.
- Ratio $\Gamma(\mathbf{K_{e2}})/\Gamma(\mathbf{K_{\mu 2}})$:
 - Two new preliminary results reported by KLOE and NA48/2. \implies Precision on $\Gamma(\mathbf{K_{e2}})/\Gamma(\mathbf{K_{\mu 2}})$ now 1.3%.
 - P-326 will perform dedicated run this year to reach $\sigma_{rel}(\Gamma(\mathbf{K_{e2}})/\Gamma(\mathbf{K_{\mu 2}})) \sim 0.3\%$

 \implies Sensitivity to LFV in SUSY!