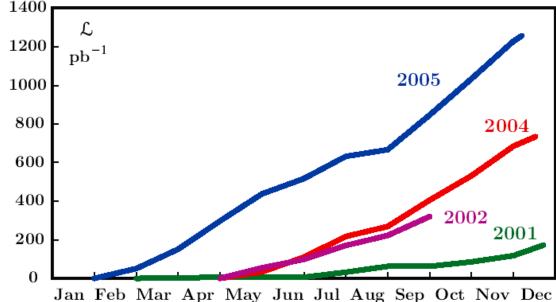


B. Sciascia, LNF INFN for the KLOE collaboration Kaon 07 Frascati, 21 May 2007

Outline:

- The KLOE detector at $Da\Phi ne$
- Measurement of absolute K±l3 branching ratios
- V_{us} with KLOE BR results

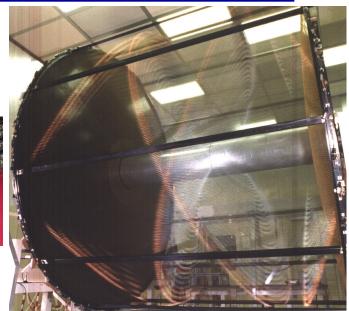

The DA Φ NE e^+e^- *collider*

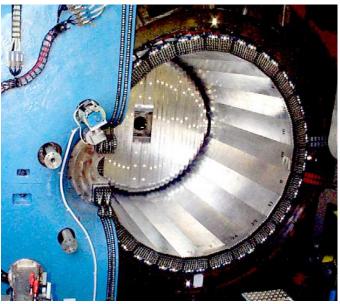
- Collisions at c.m. energy around the ϕ mass: $\sqrt{s} \sim 1019.4$ MeV
- Angle between the beams at crossing:
 - $\alpha_{\rm crs} \sim 12.5 \, {\rm mrad}$
- Residual laboratory momentum of ϕ : $p_{\phi} \sim 13 \text{ MeV/c}$
- Cross section for ϕ production @ peak: $\sigma_{\phi} \sim 3.1 \ \mu b$

Grand total (2001/5): $\int \mathcal{L} = 2.5 \text{ fb}^{-1}.$ $\mathcal{L}_{\text{peak}} = 1.3 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}.$

Results presented in this talk from 2001/2 data: $\int \mathcal{L} = 450 \text{ pb}^{-1}$.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007


The KLOE detector


- Large cylindrical drift chamber
- Lead/scintillating-fiber calorimeter.
- Superconducting coil: 0.52 T field.

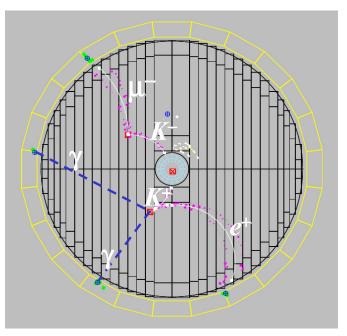
 $\begin{array}{l} \mbox{He/IsoC}_4 \mbox{H}_{10} \ 90/10 \ drift \ chamber \\ \mbox{4m-}\ensuremath{\varnothing}, \ 3.75m\mbox{-length}, \ all\mbox{-stereo} \\ \mbox{\sigma}_p/p = 0.4 \ \% \ (tracks \ with \ \theta > 45^\circ) \\ \mbox{\sigma}_x^{\ hit} = 150 \ \mu m \ (xy), \ 2 \ mm \ (z) \\ \mbox{\sigma}_x^{\ vertex} \ \sim 1 \ mm \end{array}$

Lead-Scintillating fiber calorimeter $\sigma_E/E = 5.7\% / \sqrt{E(GeV)}$ $\sigma_t = 54 \text{ ps} / \sqrt{E(GeV)} \oplus 100 \text{ ps}$ (relative time between clusters) PID capabilities $\sigma_L(\gamma\gamma) \sim 2 \text{ cm} (\pi^0 \text{ from } K_L \rightarrow \pi^+\pi^-\pi^0)$

___ Absolute BR(K[±]*l*3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007

 $\begin{array}{l} K_{S}K_{L} \left(K^{+}K^{-} \right) \text{ produced from } \phi \text{ are in a pure } J^{PC} & \phi \text{ decay mode } BR \\ = 1^{--} \text{ state:} & K_{S}, K^{+} \longleftarrow \phi \longrightarrow K_{L}, K^{-} & K^{+}K^{-} & 49.1\% \\ & \frac{1}{\sqrt{2}} \left(|K_{L}, \mathbf{p}\rangle | K_{S}, -\mathbf{p}\rangle - |K_{L}, -\mathbf{p}\rangle | K_{S}, \mathbf{p}\rangle \right) & K_{S}K_{L} & 34.1\% \end{array}$

Observation of $K_{S,L}$ signals presence of $K_{L,S}$; $K^{+,-}$ signals $K^{-,+}$


• Allow precise **absolute** branching ratio measurement, by means of a tag technique:

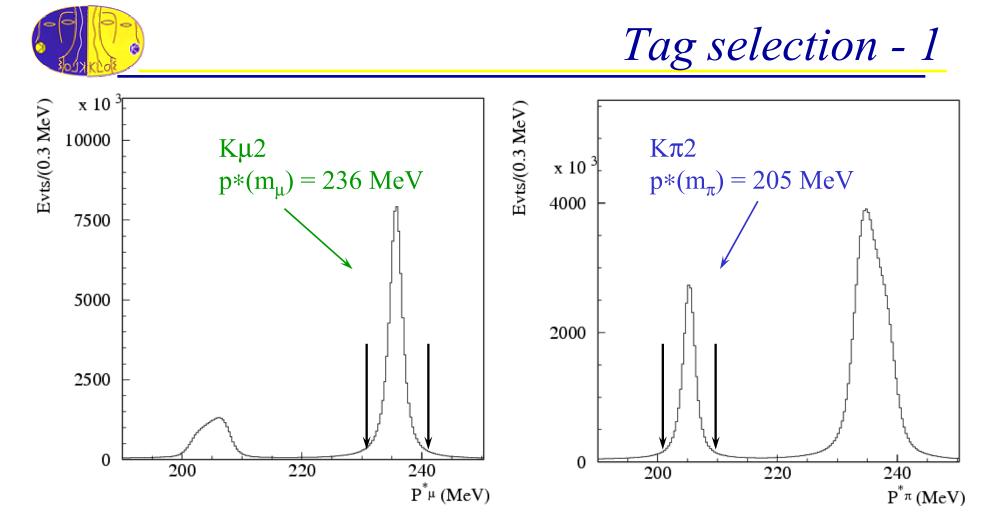
 $BR = (N_{sig}/N_{tag})(1/\epsilon_{sig}),$

• This relies on the capability of selecting a tag kaon independently on the decay mode of the other.

• In fact some dependency on signal mode exists:

 $BR = (N_{sig}/N_{tag}) (1/\epsilon_{sig}) (<\epsilon_{Tag} > /\epsilon_{Tag}(sig)).$ • Tag bias: carefully measured using MC and data control samples.

Analysis outline


$$BR(KI3) = \frac{N(KI3)}{N_{TAG} (1-f_{NI})} \frac{1}{\varepsilon_{FV}} \frac{1}{\varepsilon_{SELE}} \alpha_{TB}$$

- Tag using kaon 2 body decays:
 - \rightarrow 4 independent samples: K⁺µ2, K⁺π2, K⁻µ2, and K⁻π2

 \rightarrow Keep the systematic effects due to the tag selection under control (Kaon nuclear interaction correction holds for positive tag only).

 \rightarrow Correct for the tag bias.

- On signal side: selection of semileptonic decays (kinematical cuts to reject dominant backgrounds).
- Obtain number of signal events from a constrained likelihood fit of data distribution.
- Measure selection efficiency on MC and correct for Data/MC differences.
- Perform the BR measurement on each tag sample separately normalizing to tag counts in the same data set.

- Track from IP, momentum cut: 70 MeV $\leq p_{K} \leq 130$ MeV
- Decay vertex in fiducial volume: $40 \text{cm} \le \rho_{\text{VTX}} \le 150 \text{ cm}$
- 2-body decays identified in kaon rest frame: 3σ cut around p* peak
- For K π 2 tags, require also π^0 identification.

• To reduce the dependency of the tag selection on signal kaon decay mode, requires the selected tag to satisfy the EMC trigger. For 2001-2002 data set:

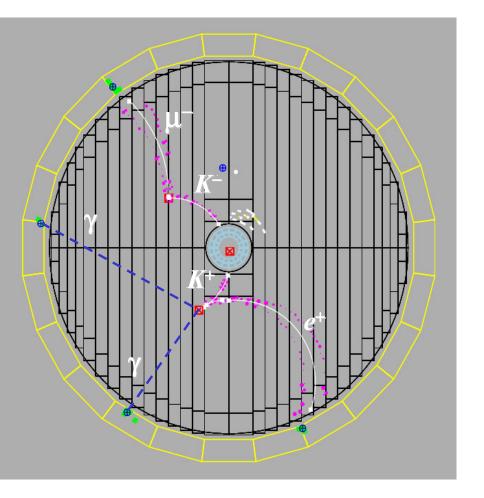
Tag	K+µ2	$K^+\pi 2$	К-µ2	Κ⁻π2
N _{TAG}	21 319 804	7 220 354	21 874 232	6 904 949

• Separate measurements for tag channel (K μ 2 and K π 2) and for charge: allow to keep the systematic effects due to the tag selection under control.

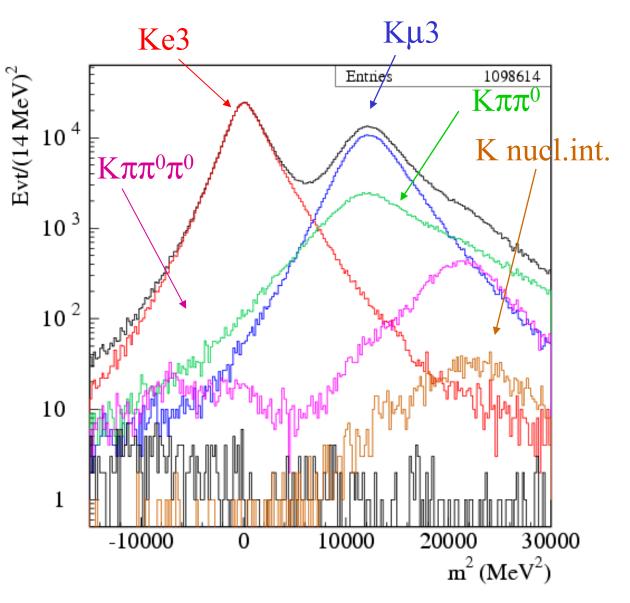
• Measure the dependency of the tag selection efficiency on signal mode using MC. Correct for experimental effects (cosmic veto, machine background filter,...) using MC and downscaled data control samples.

Tag	K+µ2	$K^+\pi 2$	K-µ2	K-π2
Ke3	0.9694(11)(41)	1.0137(34)(43)	0.9884(10)(38)	1.0328(23)(11)
Κμ3	0.9756(13)(41)	1.0210(36)(44)	0.9963(10)(38)	1.0371(25)(11)

- Corrections range from -3% to +4% following the tag sample.
- For most of the tag bias corrections, the systematic error is the correction itself.

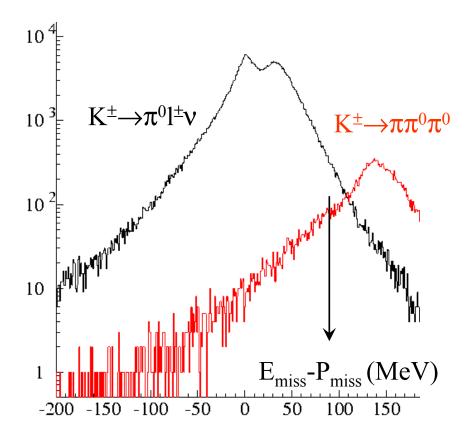

- Absolute BR(K±l3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007 🔄

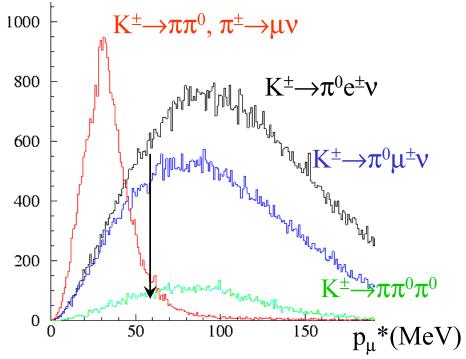
- 1-prong kaon decay vertex in the fiducial volume ($40 < \rho_{VTX} < 150$ cm).
- Daughter track extrapolated to EMC.
- Search for a π^0 : 2 neutral cluster in EMC, with ToF matching the K decay vertex $(\Delta(\delta t) < 3\sigma_t)$.
- Sample composition: Ke3, K μ 3, and K π 2.
- Reject the abundant K π 2 decays: p*(m_{\pi}) < 192 MeV.
- To isolate Ke3 and K μ 3 decays, the lepton is identified by a ToF technique:


$$t^{\text{decay}}_{K} = \langle t_{\gamma} - L_{\gamma}/c \rangle = t - L/(\beta c)$$
$$(\beta = \text{Sqrt}(p^{2} + m_{\text{LEPT}}^{2})/p)$$

 \bullet Spectrum of charged particle mass, $m^2_{\ LEPT}$

- Evident Ke3 and Kµ3 peaks.
- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ with a π^{0} undergoing a Dalitz decay – give a m^{2}_{lept} under the Ke3 peak.
- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ –with an early $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ give a m^{2}_{lept} under the Kµ3 peak.
- Signals and background have the same signature in m².




Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007

Background rejection

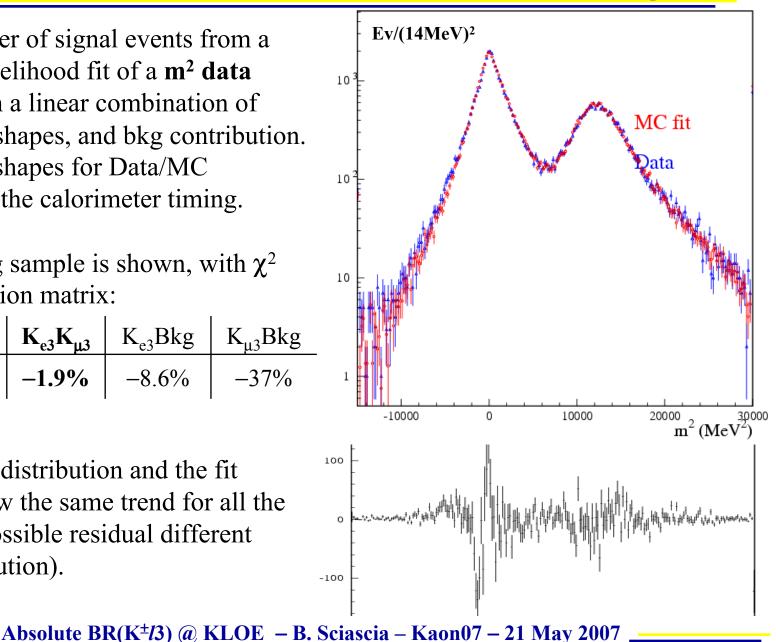
• $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ are rejected cutting on E_{miss} - P_{miss} spectrum (<90MeV).


• $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ events are rejected evaluating the missing momentum at the decay vertex, and cutting on momentum of the secondary track in the P_{miss} rest frame (p_µ*>60 MeV)

11.

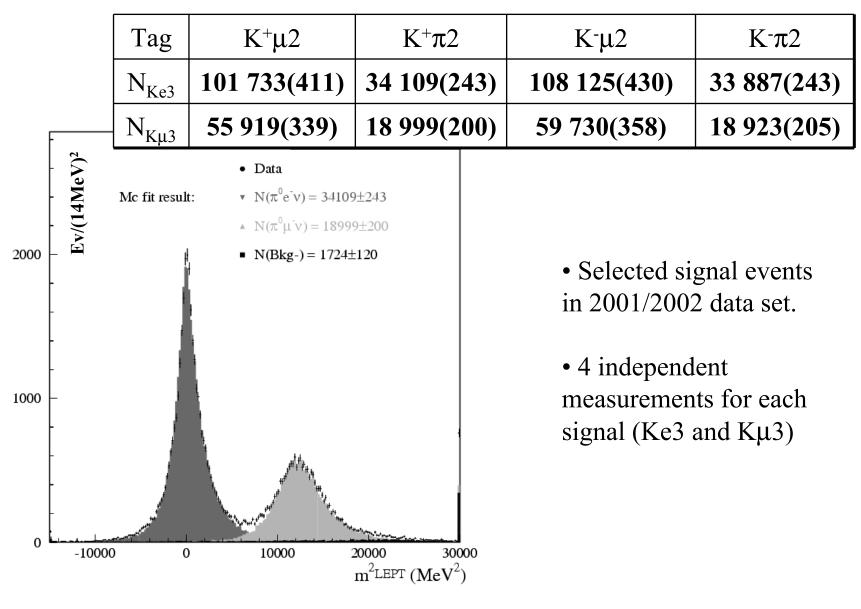
Signal selection: m² final shapes

- The previous cuts reject about 95% of background events
- \bullet The efficiency on the signal is about 80% for both Ke3 and Kµ3



• Obtain number of signal events from a constrained likelihood fit of a m² data spectrum with a linear combination of Ke3 and Kµ3 shapes, and bkg contribution. • Correct MC shapes for Data/MC differences on the calorimeter timing.

• The K⁺ π 2 tag sample is shown, with χ^2 and fit correlation matrix:


χ^2/DoF	P(χ ²)	K _{e3} K _{µ3}	K _{e3} Bkg	K _{µ3} Bkg
230/222	34%	-1.9%	-8.6%	-37%

• The residuals distribution and the fit correlation show the same trend for all the tag samples (possible residual different Data-MC resolution).

Event counting - 2

Efficiency evaluation

• Measure selection efficiency on MC and correct for relevant Data/MC differences: tracking and EMC clustering (for both photons and leptons).

$$\varepsilon_{\text{SELE}} = \varepsilon_{\text{SELE}_MC} - \frac{\varepsilon(\text{TRK})_{\text{DATA}}}{\varepsilon(\text{TRK})_{\text{MC}}} \times \frac{\varepsilon(\text{TCA})_{\text{DATA}}}{\varepsilon(\text{TCA})_{\text{MC}}} \times \frac{\varepsilon(\gamma_1)_{\text{DATA}}\varepsilon(\gamma_2)_{\text{DATA}}}{\varepsilon(\gamma_1)_{\text{MC}}\varepsilon(\gamma_2)_{\text{MC}}}$$

• For each correction, select control samples in which efficiency can be measured as function of a suitable set of variables:

- **Tracking**: independent K[±]l3 sample, plus kinematic fit; correct as a function of K polar angle, decay vertex position, and lepton momentum

- **Photon cluster**: use $K^{\pm}\pi^2$ decays, correct as function of photon energy.

- **Electron cluster**: use a K_Le3 sample, correct as a function of lepton momentum and EMC impact angle.

- **Muon cluster**: use a combined $K_L \mu 3$ and $K^{\pm} \pi 2$ plus $\pi \rightarrow \mu \nu$, sample.

• All corrections are stable wrt the variation of the cuts applied in control sample selection.

Ke3 summary

• The systematics have been carefully evaluated for each tag sample and for each decays, taking correlation into account.

• Nuclear interaction corrections affect only negative mmt.

• The final error is dominated by the error of the correction efficiency (tracking).

• Final fractional accuracy ranges from 1.5% to 2.1% following the tag sample.

16 -

Source	$K_{\mu 2}^{+}$	$K_{\pi 2}^{+}$	$K^{-}_{\mu 2}$	$K_{\pi 2}^{-}$			
	Statistical						
Tag bias	0.07 %	0.14 %	0.08 %	0.14 %			
Cosmic correction to tag bias	0.00 %	0.01 %	0.01 %	0.01 %			
FilFo correction to tag bias	0.09 %	0.31 %	0.05 %	0.17~%			
$f_{_{NI}}$	0.32 %	0.57 %	-	-			
Fit counting	0.40 %	0.71 %	0.40 %	0.72 %			
$\delta \rho_{\pi^0} \oplus \delta \rho_{TRK} \oplus \delta \rho_{TCA}$	1.17~%	1.67~%	1.24~%	1.78 %			
Syste	ematics: sig	gnal					
ρτηκ	0.54 %	0.54 %	0.53 %	0.53 %			
$ ho_{TCA}$	0.00 %	0.00 %	0.00 %	0.00 %			
$ ho_{\pi}$ o	0.24 %	0.25 %	0.24 %	0.24 %			
Fit	0.13 %	0.19 %	0.35 %	0.15 %			
Selection cuts	0.17 %	0.17 %	0.17~%	0.16 %			
System:	atics: accej	ptance					
f_{NI}	0.18 %	0.39 %	-	-			
$ au_{\pm}$	0.09 %	0.09 %	0.09 %	0.09 %			
Systematics	Systematics: tag bias corrections						
FilFo	0.36 %	0.06 %	0.37 %	0.05 %			
Cosmic veto	0.04 %	0.02 %	0.03 %	0.04 %			
$f_{_{NI}}$	0.09 %	0.13 %	-	-			
	Total						
	1.49~%	2.08~%	1.54~%	2.03~%			

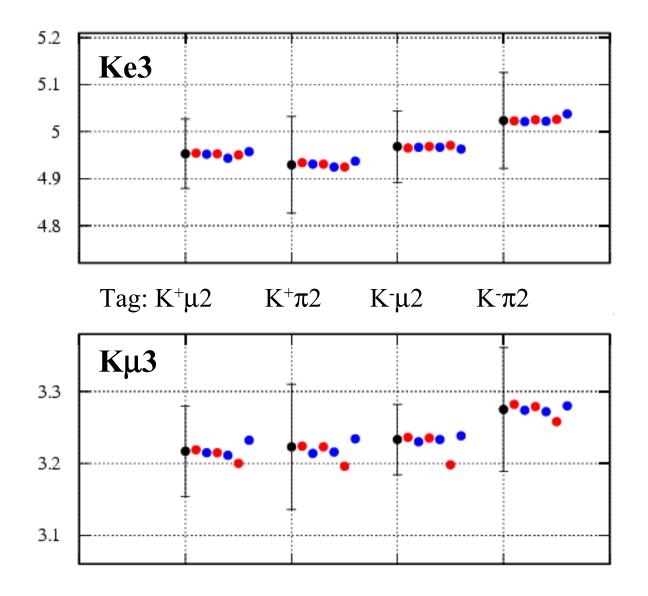
– Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007 _

Kµ3 summary

• The same Ke3 comments hold for Kµ3.

• The final error is dominated by the error of the correction efficiency (tracking and muon track-to-cluster efficiencies).

• Final fractional accuracy ranges from 1.5% to 2.7%.


Source	$K_{\mu 2}^{+}$	$K_{\pi 2}^{+}$	$K^{-}_{\mu 2}$	$K_{\pi 2}^{-}$				
Statistical								
Tag bias	0.09 %	0.18 %	0.09 %	0.17 %				
Cosmic correction to tag bias	0.01 %	0.01 %	0.01 %	0.01 %				
FilFo correction to tag bias	0.09 %	0.31 %	0.05 %	0.17 %				
f_{NI}	0.32 %	0.57 %	-	-				
Fit counting	0.61 %	1.05 %	0.60 %	1.08 %				
$\delta\rho_{\pi^{0}} \oplus \delta\rho_{TRK} \oplus \delta\rho_{TCA} <$	1.61~%	2.25 %	1.12~%	2.27 🏷				
Syste	matics: sig	gnal						
 <i>PTRK</i>	0.44 %	0.43 %	0.43 %	0.43 %				
$ ho_{TCA}$	0.14 %	0.14 %	0.14~%	0.14 %				
$ ho_\pi$ o	0.21 %	0.21 %	0.21 %	0.21 %				
Fit	0.03 %	0.16 %	0.19 %	0.06 %				
Selection cuts	0.49 %	0.49 %	0.49 %	0.48 %				
System:	atics: accej	ptance						
f	0.18 %	0.39 %	-	-				
$ au_{\pm}$	0.09 %	0.09 %	0.09 %	0.09 %				
Systematics	: tag bias	correction	S					
FilFo	0.36 %	0.06 %	0.37 %	0.05 %				
Cosmic veto	0.04 %	0.02 %	0.03 %	0.04 %				
f_{NI}	0.09 %	0.13 %	-	-				
	Total							
	1.95~%	2.71~%	1.52~%	2.63~%				

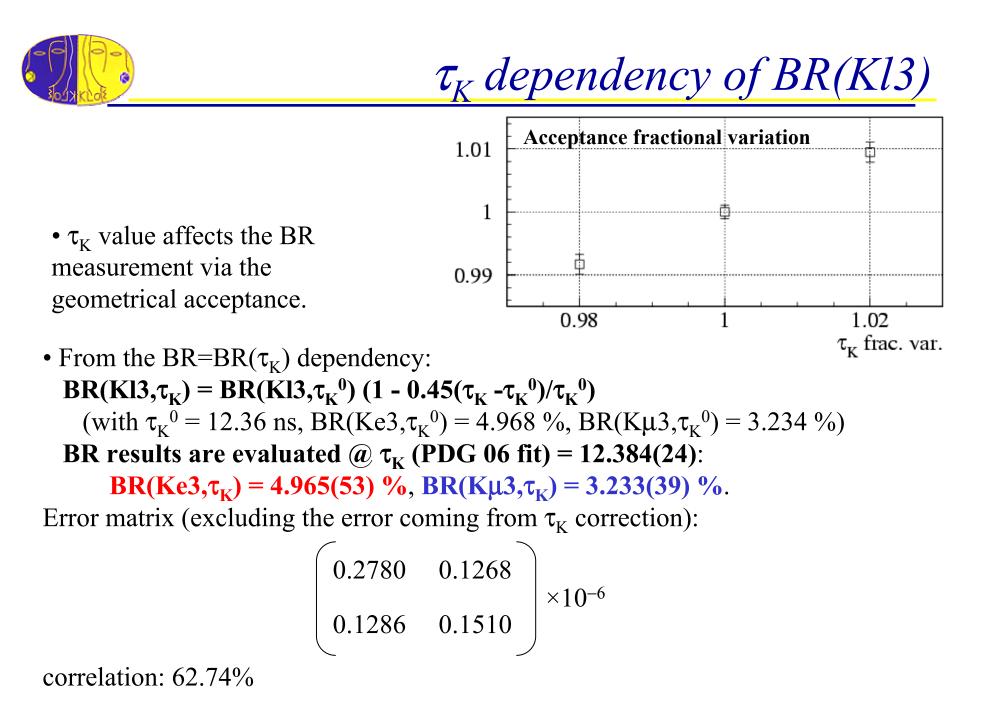
Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007 ____

17 -

- Selection cuts affect different tag–sample measurements in the same way.
- Estimate the systematic error coming from the cut applied to reject bkg events:
- $1 p*(m_{\pi}) \le 192.5$ MeV: 190 MeV-195 MeV
- 2- E_{miss}-P_{miss} <90MeV: 88 MeV-NoCut
- 3- p_µ*>60 MeV: 50 MeV - 70 MeV

Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007

for Kµ3


19

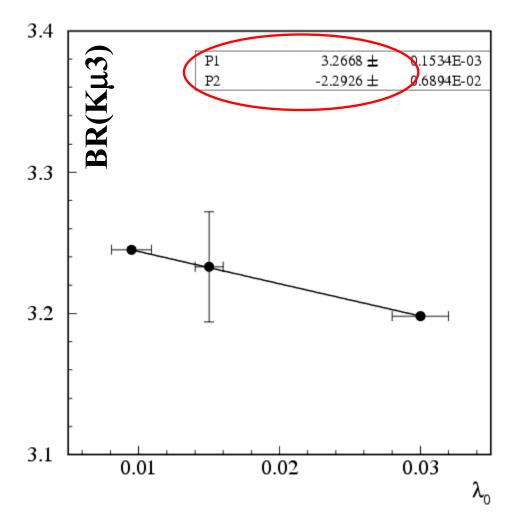
Results: BR(Kl3)

• χ^2 /ndf for the 4 independent-tag measurements:		Dr (Stat) (Suct)0/
Ke3: 1.62/3, $P(\chi^2 > \chi_M^2) \sim 65\%$		Br (Stat) (Syst)%
Kµ3: 1.07/3, $P(\chi^2 > \chi_M^2) \sim 78\%$	K-e3	4.946 (53) (38)
• Average of the four results per charge and per	K+e3	4.985 (54) (37)
decay taking correlations into account.		
• χ^2 /ndf between the charge measurements:	К⁻µ3	3.219 (47) (27)
Ke3: 0.17/1, $P(\chi^2 > \chi_M^2) \sim 68\%$ Kµ3: 0.12/1, $P(\chi^2 > \chi_M^2) \sim 73\%$	K+μ3	3.241 (37) (26)
• The errors are dominated by the statistical	Ke3	4.965 (38) (37)
·		
contribution through the statistic use for TRK correction for Ke3 and TRK+TCA corrections	Кμ3	3.233 (29) (26)

• In agreement with KLOE preliminary (05): Ke3 = 5.047(92)%, Kµ3 = 3.310(81)%.

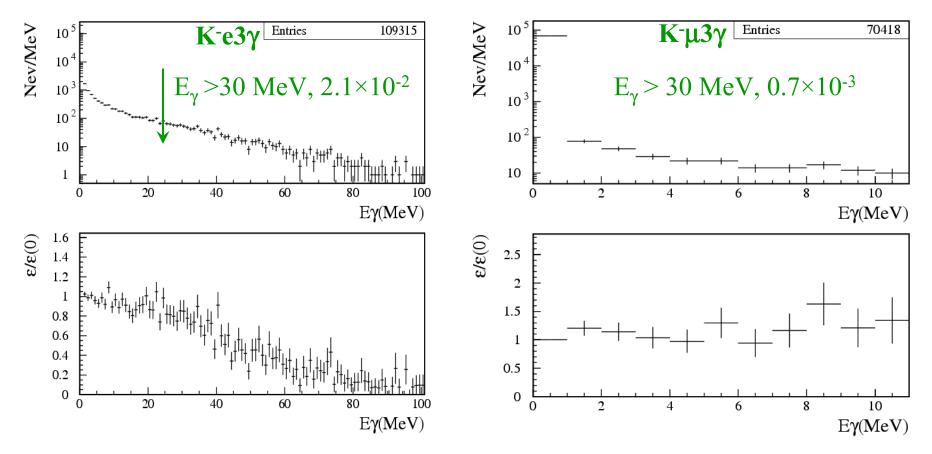
- Efficiency and tag bias corrections, as well as selection cuts induce a 63.02% correlation coefficient between the Ke3-Kµ3 branching ratio measurements.
 - _____ Absolute BR(K[±]l3) @ KLOE B. Sciascia Kaon07 21 May 2007 ____

- Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007



λ_0 dependency of BR(K μ 3)

- Wrong/old scalar form factor value in MC ($\lambda_0 = 0.030$).
- Weight MC to obtain BR(K μ 3) at the present value ($\lambda_0 \sim 0.015$).
- Evaluate BR(K μ 3) dependency on λ_0 value:


 $BR(K\mu 3) = P1 + P2*\lambda_0$

• Limited knowledge of λ_0 value, gives negligible contribution to the systematic error.

Ke3γand Kµ3γacceptance

• The acceptance are determined with a generator that uses the soft-photon approximation to sum the amplitudes for real and virtual processes to all orders of α (C.Gatti, *Eur.Phys. J. C*, 45417, 2006).

 $R_{\mu e} = \Gamma(K\mu 3) / \Gamma(Ke3)$

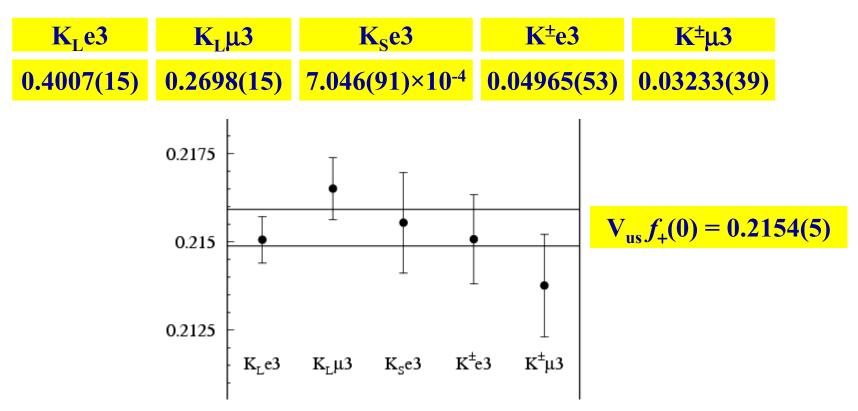
- Calculate $R_{\mu e} = \Gamma(K\mu 3)/\Gamma(Ke3)$ in the four tag samples used for BR mmt.
- $R_{\mu e} = (N_{\mu 3}/N_{e3}) (\epsilon_{e3}/\epsilon_{\mu 3}) \beta_{TB}$

• β_{TB} is the tag bias correction for the ratio, and ranges from 0.4% to 0.8% following the tag sample.

• The correlation between Ke3 and K μ 3 coming from the fit and from the efficiency corrections has been taken into account in calculating $\delta R_{\mu/e}$ • Error dominated by the statistics of the efficiency corrections.

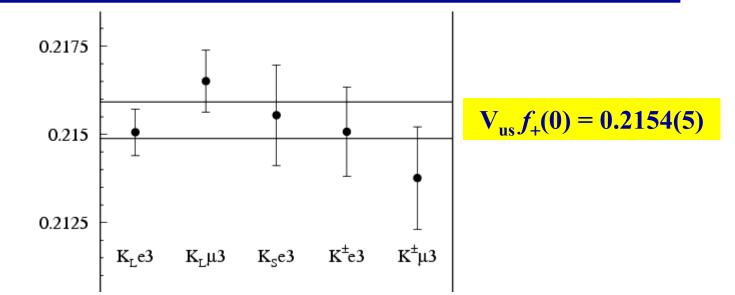
• Average: $R_{\mu e} = 0.6511(46)_{Stat}(73)_{Syst}$

Source	$K_{\mu 2}^{+}$	$K_{\pi 2}^{+}$	$K_{\mu 2}^{-}$	$K_{\pi 2}^{-}$
	Statisti	cal		
Nke3	0.40 %	0.71 %	0.40 %	0.72 %
$Nk\mu 3$	0.61 %	1.05~%	0.60 %	1.08~%
TagBias	0.12 %	0.23 %	0.12 %	0.23 %
$\delta ho_{\pi^0} \oplus \delta ho_{TRK} \oplus \delta ho_{TCA}$	0.94 %	1.09~%	0.59 %	1.36 %
	Systema	tics		
Ter	0.00.07	0 00 07	0 00 07	0.00 07
Tag	0.09 %	0.09 %	0.09 %	0.09 %
e3	0.62 %	0.64 %	0.09 %	0.62 %
_				
e3	0.62 %	0.64 % 0.72 %	0.70 %	0.62 %


$K_{\mu 2}^{+}$	$K_{\pi 2}^{+}$	$K_{\mu 2}^{-}$	$K_{\pi 2}^{-}$
0.6495	0.6538	0.6508	0.6517
(67)(66)(6)	(80)(72)(6)	(52)(74)(6)	(104)(81)(6)

• From theory: $R_{\mu e} = 0.6646(61)$ Integrals (I_{e3} and $I_{\mu 3}$) and $\delta_{SU(2)}$, δ_{em} corrections from Moulson (FlaviaNet) at CKM06.

_____ Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007 ____


• All inputs **but branching ratios** are from Moulson (FlaviaNet) at CKM06:

- Taking correlation into account: $\chi^2/ndf = 4.37/4$ (36% probability).
- Using $f_{+}(0) = 0.961(8)$ (Leutwyler and Roos), obtain $V_{us} = 0.2241(19)$.
- $V_{ud}^2 + V_{us}^2 1 = -0.0015(10)$, $V_{ud} = 0.97377(27)$ compatibile with Unitarity at -1.5σ .
- _____ Absolute BR(K[±]/3) @ KLOE B. Sciascia Kaon07 21 May 2007 _

V_{us} from KLOE results (BR's)

Evaluate V_{us} f₊(0) by charge state: K_{L,S} = 0.2155(6), K[±] = 0.2146(12) Average: 0.2154(5), χ²/ndf = 0.48/1 (49% probability). Lepton universality: r_{µe} = (R_{µe})_{OBS}/(R_{µe})_{SM} r_{µe}(K_{L,S}) = 1.013 (9) r_{µe}(K[±]) = 0.988 (11) Average: 1.003(7), χ²/ndf = 3.60/1 (5.8% probability) Evaluate empirical ΔSU(2) correction: 1.88(58) %

to be compared with χ_{PT} prediction 2.31(22) %

Absolute K[±]/3 branching ratio measurements:

- BR measured in 4 independent tag samples: keep tag systematic under control.
- Efficiency corrections carefully checked on Data and MC control samples.
- Completely inclusive measurements: $K\ell 3(\gamma)$.
- Final BR with a fractional accuracy of 1.1% for Ke3 and 1.2% for Kµ3.

- $R_{\mu e}$ has been measured on the same sample with 1.3% of fractional accuracy, and is in agreement within the errors with the theoretical prediction.

$|V_{us}f_{+}(0)|$ determination with the 5 KLOE semileptonic BR's:

- 0.2% determination of $|V_{us}f_{+}(0)|$, with $\chi^{2}/dof = 4.37/4$.
- Good agreement between charged and neutral determinations: $\chi^2/ndf = 0.48/1$.

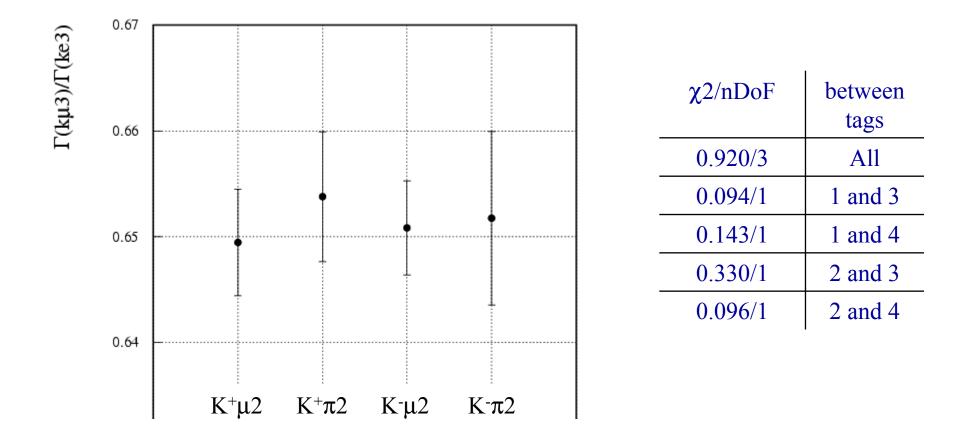
Perspectives for K[±]/3 with 2.5 fb⁻¹ of KLOE collected data:

- A factor 2 better in the error of BR measurements.
- Measurements of form factors (~2.5 million Ke3, ~1,5 million K μ 3).

Additional information

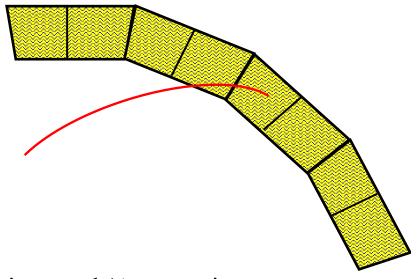
_____ Absolute BR(K[±]l3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007 ____

Result: BR(Kl3) - details


	$K^{+}_{\mu 2}$	$K_{\pi 2}^{+}$	$K_{\mu 2}^{-}$	$K_{\pi 2}^{-}$
N _{TAG}	21 319 804	7 220 354	21 874 232	6 904 949
N_{Ke3}	101 733 (411)	34 109 (243)	108 125 (430)	33 887 (243)
$1 - f_{_{NI}}$	0.9751(31)	0.9821(59)	-	-
$\varepsilon_{FV}\varepsilon_{Sig}$	0.0957(11)	0.0989(17)	0.0983(12)	0.1008(18)
α_{TB}	0.9694(11)	1.0137(34)	0.98838(94)	1.0328(23)
$BR(K_{\epsilon s})$	4.953(64) %	4.929(95) %	4.968(65) %	5.024(97)~%
	72+	±2+	t/-	t/-
	$K_{\mu 2}^{+}$	$K_{\pi 2}^{+}$	$K_{\mu 2}^{-}$	$K_{\pi_{2}}^{-}$
N _{TAG}	K ⁺ _{μ2} 21 319 804	$K_{\pi 2}^+$ 7 220 354	$K_{\mu 2}^{-}$ 21 874 232	$K_{\pi 2}^{-}$ 6 904 949
\mathbb{N}_{TAG} $\mathbb{N}_{K\mu 3}$	/		· · · · · · · · · · · · · · · · · · ·	
	21 319 804	7 220 354	21 874 232	6 904 949
$\frac{\mathbb{N}_{K\mu3}}{1-f_{_{NI}}}$	21 319 804 55 919 (339)	7 220 354 18 999 (200)	21 874 232	6 904 949
$N_{K\mu 3}$	21 319 804 55 919 (339) 0.9751(31)	7 220 354 18 999 (200) 0.9821(59)	21 874 232 59 730 (358) -	6 904 949 18 923 (205) -

- Only statistical error are show here
- χ^2 /DoF for the 4 independent-tag measurements:

Ke3: 1.62/3, $P(\chi^2 > \chi_M^2) \sim 65\%$ Kµ3: 1.07/3, $P(\chi^2 > \chi_M^2) \sim 78\%$


- 6) ((-		Cori	relat	ion l	betwee	en diffe	erent	t tag	- Kl3
5.1		$K^+\pi 2$		K-π2		K+µ2	K+π2	K-μ2	Κ-π2
	Ť	Ť	Ť	ļ					T
5			•••••			Ť	Ī	Ť	+
4.9		•		<u> </u>	3.2	- •	•	•	
	+	ļ				L	Ļ		
			χ^2 betwee	en tags:	$\chi^2/1$ DoF	$\operatorname{Prob}(\chi^2 > \chi$	2 Meas)	:	:
					K_{e3}				
		_	$K^+_{\mu 2}$ and	d $K^{\mu 2}$	0.05	0.82			
			${K^+_{\mu 2}}$ and ${K^+_{\pi 2}}$ and	d $K^{\pi 2}$	0.68	0.41			
					0.19	0.66			
		_	$K_{\pi 2}^+$ and	d $K_{\pi 2}^-$	0.85	0.36			
					$K_{\mu 3}$				
			$K^+_{\mu 2}$ and	d $K^{\mu 2}$	0.09	0.76			
			${K^+_{\mu 2}}$ and ${K^+_{\pi 2}}$ and	d $K_{\pi^2}^-$	0.60	0.44			
			$K_{\pi^2}^+$ an	d $K_{\mu 2}^{-}$	0.02	0.89			
			$K_{\pi 2}^+$ and	d $K^{\pi 2}$	0.35	0.55			

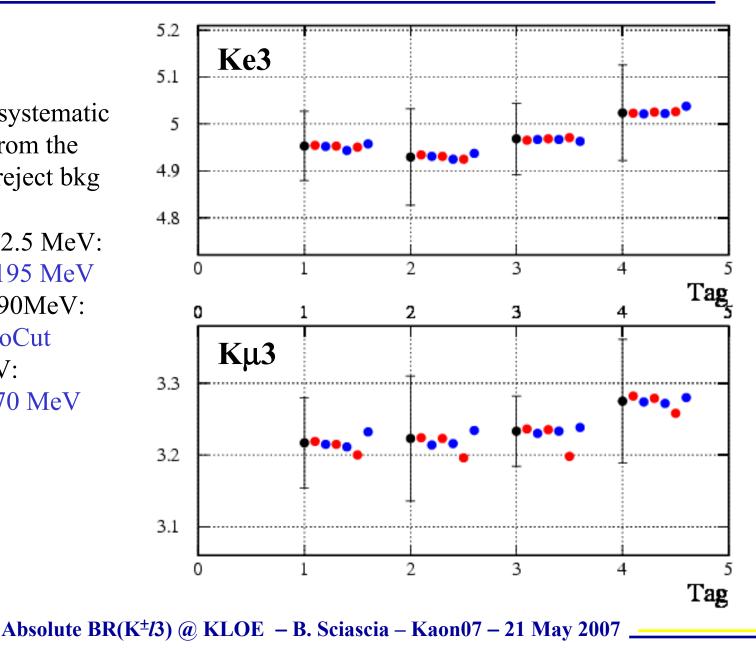
Correlation between different tag - Rµe

- Calorimeter trigger (2 sectors over threshold ~50 MeV) satisfied by tag:
- Tag K[±] μ 2: ask for associated μ -cluster on barrel with energy > 90 MeV. μ -cluster fires at least one sector.
 - μ -cluster fires two sectors (ϵ ~30%)
 - ask for additional fired trigger sectors to satisfy calorimeter trigger (ϵ ~45% for K⁺, ϵ ~40% for K⁻)

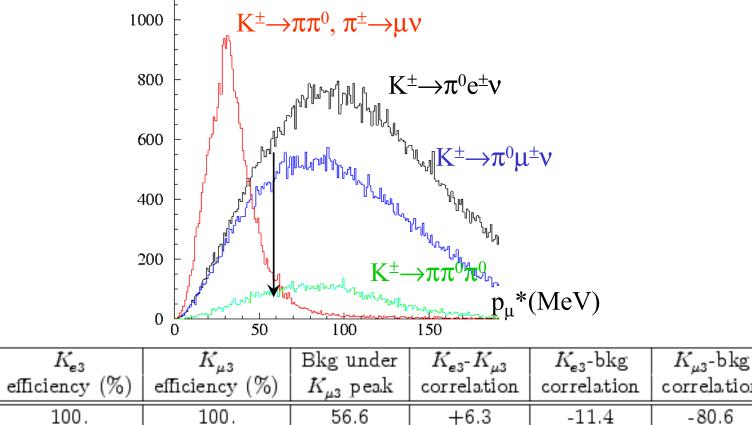
• Tag K[±]π2:

- a) look for a π^0 from vertex using the $\Delta(\delta t)$ technique and ϕ^* constraint.
- b) π^0 clusters satisfy the Emc trigger ($\epsilon \sim 90\%$)

• For each kaon charge, 2+1 different tag samples: $K\mu 2+\mu Trg$, $K\pi 2+\pi^0 Trig$, and $K\mu 2+\mu No Trg$.


- 2 tag \times 2 charge = 4 samples for the measurements
- 1 tag \times 2 charge = 2 control samples

Signal systematics - 1

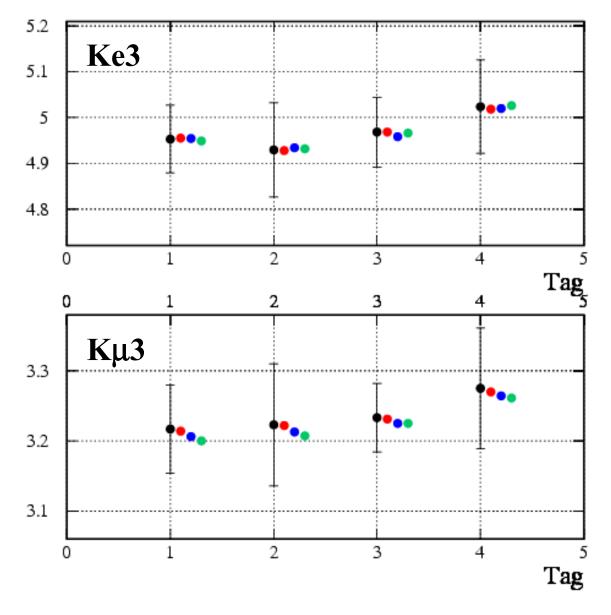

- Estimate the systematic error coming from the cut applied to reject bkg events:
- $1 p*(m_{\pi}) \le 192.5 \text{ MeV}:$ 190 MeV-195 MeV
- 2- E_{miss}-P_{miss} <90MeV: 88 MeV-NoCut

3- p_μ*>60 MeV: 50 MeV - 70 MeV

Systematic errors from p_{μ} * cut

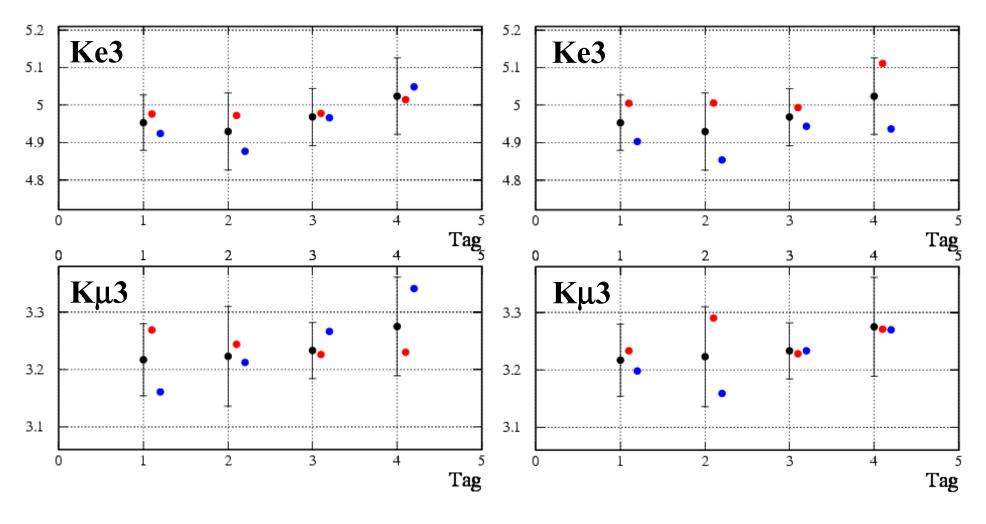
p_{μ}^{*} cut	K_{e3}	$K_{\mu 3}$	Bkg under	$K_{e3} - K_{\mu 3}$	$K_{\!e3}$ -bkg	$K_{\mu 3}$ -bkg
MeV)	efficiency (%)	efficiency (%)	$K_{\mu3}$ peak	correlation	correlation	correlation
0	100.	100.	56.6	+6.3	-11.4	-80.6
40	93.26	90.52	17.0	+7.2	-15.1	-71.0
50	88.66	86.61	9.1	+4.3	-15.1	-56.7
60	83.04	77.68	5.0	+1.1	-13.6	-42.6
70	76.58	69.95	3.6	-0.9	-11.4	-35.1
80	69.74	61.83	3.0	-1.6	-10.7	-31.9
90	62.46	53.83	2.8	-2.2	-9.2	-29.5

33 _____


- Absolute BR(K±l3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007 🔄

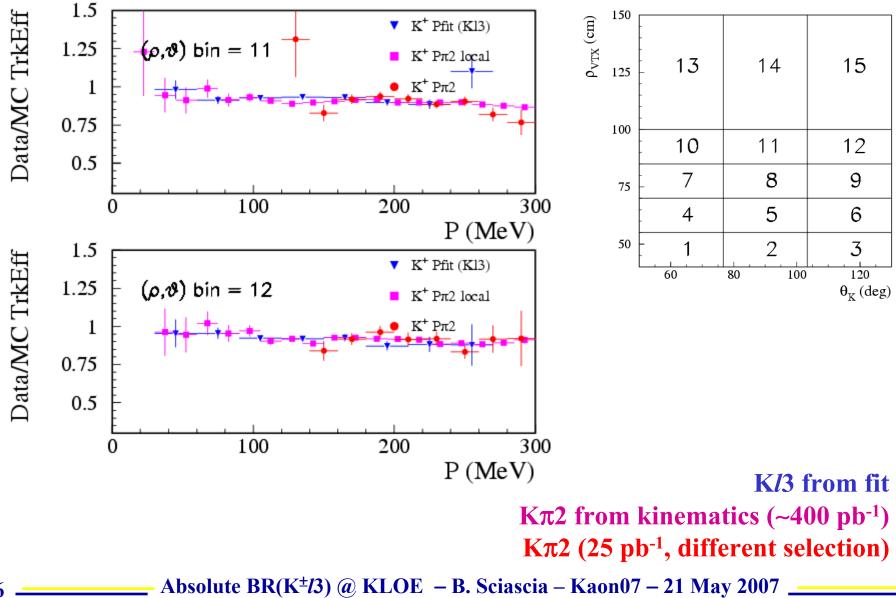
Signal systematics - 2

• No cut is applied to P_{LAB} in signal selection; require P_{LAB} > xx MeV to check the stability of the momentumdependent corrections (TRK and TCA)


P_{LAB} > 50 MeV > 70 MeV > 90 MeV

Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007

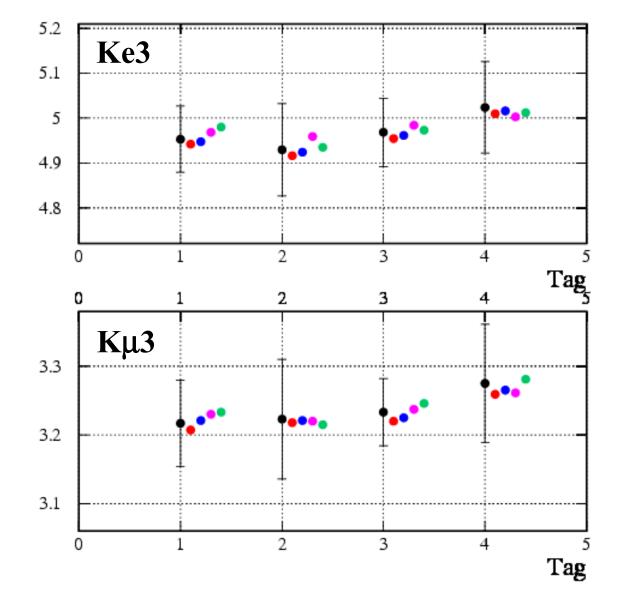
Signal systematics - 3



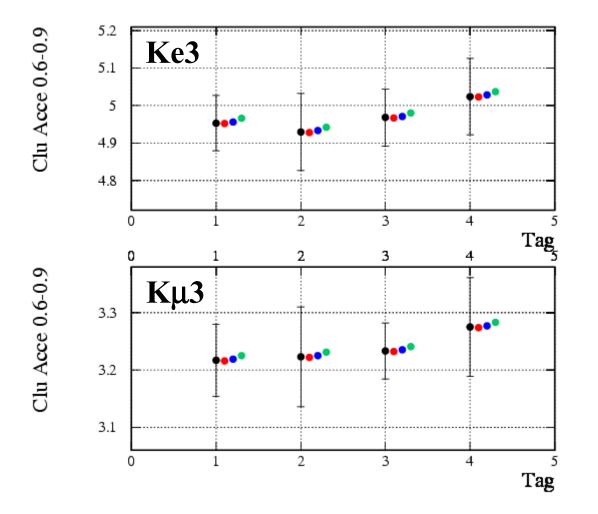
Transversal vertex position (low/high)

Kaon polar angle (vertical or not)

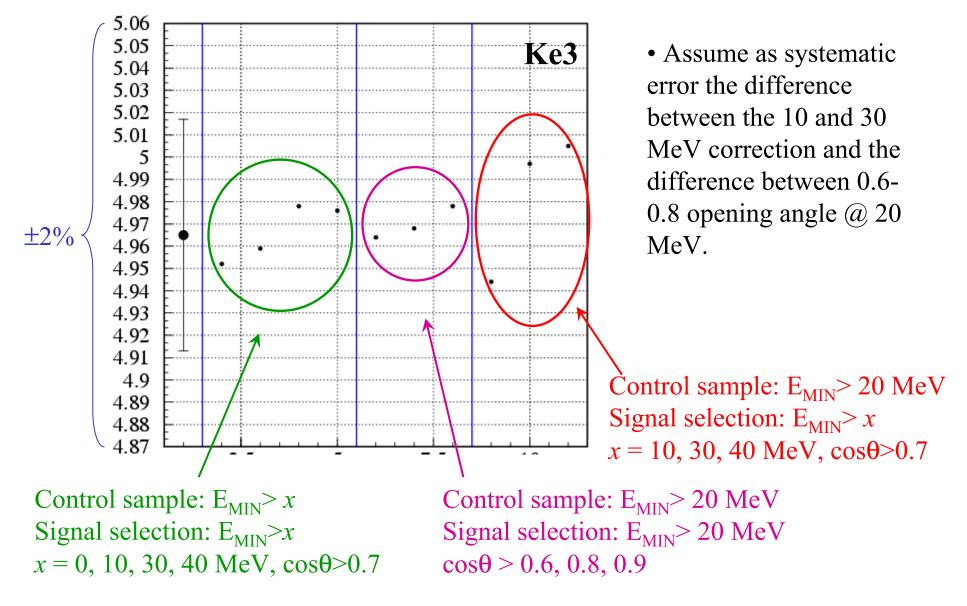
Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007 _


Correction from control sample - TRK

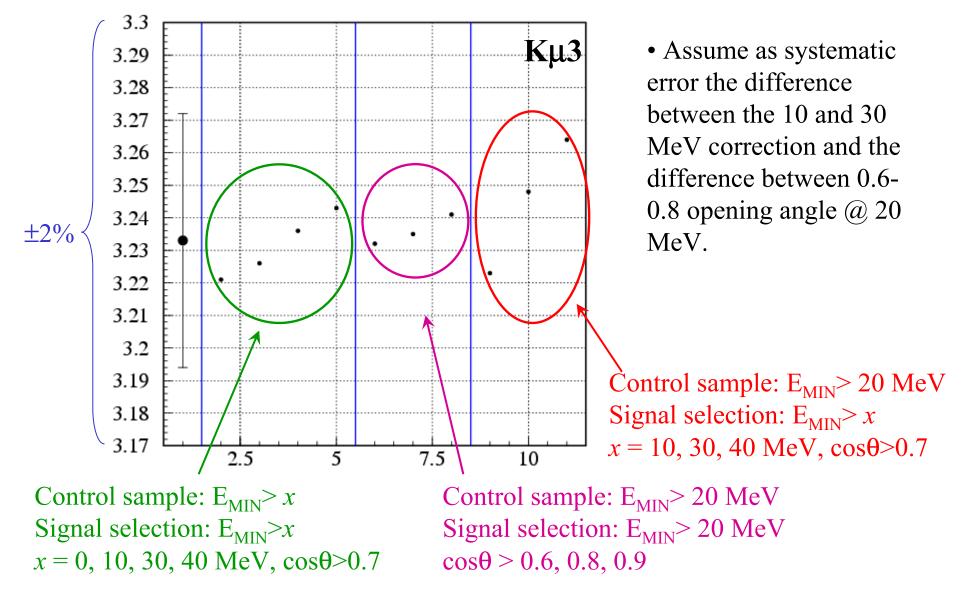
Signal systematics - 4


• To check the correction applied for the cluster efficiency, require a minimum energy to π^0 clusters: $E_{MIN}(Clu) > 0$ MeV > 10 MeV > 30 MeV > 40 MeV

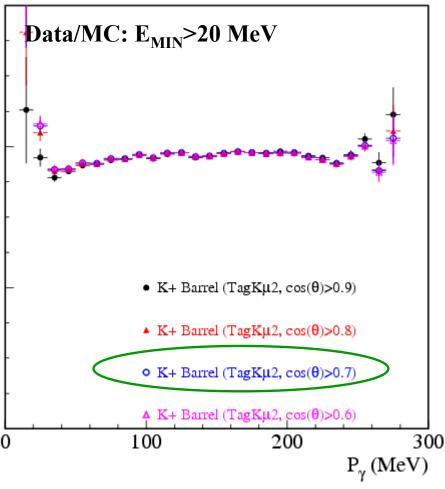
Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007


Signal systematics - 5

• To check the robustness of the cluster efficiency correction wrt the acceptance cut, vary the opening angle ($\cos(\theta) > 0.7$) and use the CLU correction obtained: $\cos(\theta) > 0.6$ > 0.8> 0.9


Signal systematics : CLU correction

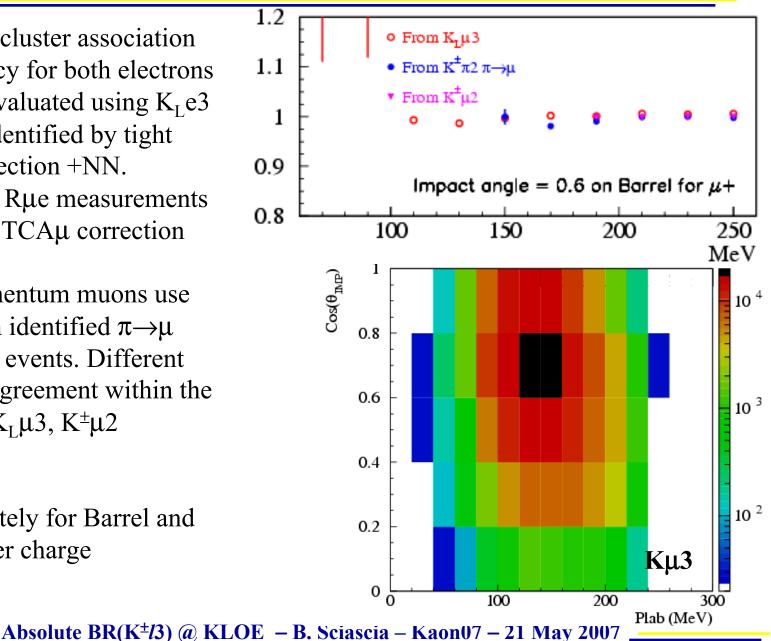
_____ Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007


Signal systematics : CLU correction

____ Absolute BR(K[±]/3) @ KLOE – B. Sciascia – Kaon07 – 21 May 2007

Efficiency from control sample - CLU

- Select events with K μ 2 tag, to unbias the efficiency measurement for the trigger. 1.1
- Ask for a K π 2 selection (p_{π}^* cut) in the signal side.
- Get $\beta_{\pi 0}$ from the missing momentum at vertex.
- Use the opening angle between estimated and cluster direction Look for a π^0 -photon from the vertex, excluding clusters already used by the tag or connected to a track.
- Starting with $K\pi 2+\gamma$ selection, estimate the energy and the position of the "other photon".
- Look for a cluster from the vertex with $\Delta(\delta t)$ matching (the one applied for π^0 signal selection), acceptance cut range: $\cos\theta > 0.6_{0.8} > 0.7$, >0.8, and >0.9, and require e minimum o energy of 0, 10, 20, 30, 40 MeV.
- Use $\cos\theta > 0.7$ and $E_{MIN} = 20$ MeV for the mmt and use the other as systematic checks.
 - _____ Absolute BR(K[±]/3) @ KLOE B. Sciascia Kaon07 21 May 2007


Correction from control sample - TCA

• The Track-to-cluster association (TCA) efficiency for both electrons and muons is evaluated using $K_{I} e3$ $K_{I}\mu 3$ events, identified by tight kinematical selection +NN.

• BR(K μ 3) and R μ e measurements are sensitive to TCA μ correction

• For high momentum muons use also $K^{\pm}\pi^2$, with identified $\pi \rightarrow \mu$ kink, and $K^{\pm}\mu 2$ events. Different corrections in agreement within the errors. Use a " $K_{I}\mu 3$, $K^{\pm}\mu 2$ combination".

•Correct separately for Barrel and EndCap, and per charge

