KLOE preliminary results for

$$\Gamma(K \rightarrow ev)/\Gamma(K \rightarrow \mu v)$$

Alexei Sibidanov

for the KLOE collaboration

- Motivation
- Selection
 - Kinematic cuts
 - Particle identification using EmC
- Counting
- Conclusion

Motivations

- Test of lepton universality in SM helicity suppressed decays
- High sensitivity to "new physics":
 - SM prediction is very precise, 0.04%, see
 Finkemeier, PLB387(1996)
 - Deviations up to few% could appear in MSSM
 with LFV, see Masiero, Paradisi, Petronzio PRD74(2006)
- Accuracy at KLOE can reach 1% level

Signal definition

- Radiative corrections: IB + DE terms in MC generator
- Signal: $K \rightarrow ev(\gamma)$, $E_{\gamma} < 20 \text{ MeV}$
- DE is negligible in this range
- SM prediction made in terms of IB process only (unobservable)
 - After counting, correct for $\varepsilon_{IB} = 0.9528(5)$ to compare with SM

Data sample

- Total integrated luminosity at φ-peak is ~ 2.3 fb⁻¹
- Analyzed luminosity is ~1.7 fb⁻¹
- MC set produced on a run-by-run basis (2001+2002+2005), ~1 fb⁻¹
 - Background 1:1
 - Signal 100:1

Event selection - 1

- "Direct" search, without tagging (x4 statistics):
 - Search for kink inside drift chamber
 - Track quality for K and secondary tracks, vtx quality
- "Recovery" search (additional 40% of statistics):
 - Tag K^{+,-} with 2-body or track dE/dx
 - Search for decays of K^{-,+} before DC
- For Ke2: PID technique based on EmC info
- Signal counting based on kinematics and PID
- Preliminary result based on "direct" method

Event selection - 2

Kaon momentum is measured with 1% resolution, close kinematics to get \mathbf{M}_{lep}

Ratio definition

$$R = \frac{N_{e2}}{N_{\mu 2}} \left[C^{TRG} \right] \left[C^{TRK} \frac{\varepsilon_{\mu 2}^{TRK}}{\varepsilon_{e2}^{TRK}} \right] \left[\frac{1}{C^{PID} \varepsilon_{e2}^{PID}} \right] \frac{1}{\varepsilon_{e2}^{IB}}$$

$$C^{TRG} = \frac{\varepsilon_{\mu \, 2}^{TRG}}{\varepsilon_{e2}^{TRG}}$$
 Trigger efficiencies from data

 ε_i^{TRK} Tracking efficiency from MC C^{TRK} Correction from data

 ε_{e2}^{PID} PID efficiency from MC

CPID Correction from data

Track+Vtx quality cuts

Require:

$$-\chi^{2}_{K} < 6.6$$

$$-\chi^{2}_{e} < 7$$

$$-\chi^2_{\text{vertex}} < 3$$

- $\Delta M_{lep}^2 < 2000 (MeV/c^2)^2$
- Quality cut suppress ~×10
 Kμ2 resolution tails in signal region

Track+Vtx quality cuts

Require:

$$-\chi^{2}_{K} < 6.6$$

$$-\chi^{2}_{e} < 7$$

$$-\chi^2_{\text{vertex}} < 3$$

- $\Delta M_{lep}^2 < 2000 (MeV/c^2)^2$
- Quality cut suppress ~×10
 Kµ2 resolution tails in
 signal region

Track+Vtx efficiency

- Common to Ke2 (signal)
 and Kµ2 (normalization)
 almost cancel out in ratio
- Correct the efficiency dependence on P using Kμ2 control sample
 C^{TRK} = 0.994(9) (only 10 pb⁻¹ used)

PID in calorimeter

PID exploits granularity of KLOE calorimeter building shower profile along particle path

$$A_F = (E(2)-E(1))/(E(2)+E(1))$$

$$A_L = (E(L)-E(L-1))/(E(L)+E(L-1))$$

$$E^{2}_{RMS} = \sum_{i=1..N} (E(i) - \langle E \rangle)^{2}/N$$

Centroid position, E/P

PID selection

- Electromagnetic shower pattern:
 - A_F <0, E(3)<45 MeV, E_{MAX} >70 MeV, L_{MAX} <12 cm
- Muon rejection:
 - E_{RMS} as fit variable
 - $-A_{1} < -0.85$

PID selection

- Signal efficiency is 0.647(6)
- Background rejection is ~ 300

PID efficiency

- Use K_{e3} decay of K_L as a control sample
 (CS) for Track-to-Cluster Association and PID efficiencies (~same CS as in analysis of form factor slopes)
- CS purity reached ~ 99.7%, with:
 - ~200k events selected
 - 600 pb⁻¹ used to evaluate efficiencies

Asymmetry in energy deposition in the first two fired planes of calorimeter

Normalized energy deposition in the third calorimeter plane

Maximum energy release in a calorimeter plane

Energy spread over calorimeter planes

Efficiency of PID selection

- Correction evaluated from CS
 as function of impinging
 angle and momentum [cos(ψ)
 vs P] [barrel, end-cap]
- Result is $C^{PID} = 1.009(9)(15)$
- Same CS used to evaluate cluster efficiency correction
- For regions which are not covered by CS systematic error conservatively evaluated as a total correction

Signal event counting

- Fit data to the Monte Carlo
 E_{rms} vs M²_{lep} distribution
 using log likelihood
- Fit quality is 434/291 n.d.f
- Count 8090(156) events
- IB/DE fixed in the fit to the actual PDG value
 - Uncertainty evaluated
 by repeating the fit with
 different IB/DE ratio
 according to PDG error
 - Systematics ~ 0.3%

Fit projections

Fit projections

Trigger efficiency

- Trigger efficiency evaluated directly from data comparing DC and EMC triggers
- Correlation between two triggers from MC
- Correction evaluated as a function of data period
- Dependence on period at level of 1%
- $C^{TRG} = \varepsilon^{TRG}_{\mu} / \varepsilon^{TRG}_{e} = 0.998(9)(6)$

Preliminary result

Number of K₁₁₂ events

$$-N_{ku2} = 499251584 \pm 35403$$

Number of K_{e2}

Systematics(fractional):

- IB 0.0005

- IB/DE 0.003

- TRK+VTX 0.009

- PID 0.009±0.015

- TRG 0.006±0.004

 $R = (2.55\pm0.05\pm0.05) \times 10^{-5}$

SM: $R=(2.472\pm0.001)x10^{-5}$

Comments on uncertainty: stat

- Present statistical accuracy 1.9%
- Final statistics will be x1.3, counting >10k events
- Present stat error dominated by background:
 - Signal fluctuation 1.1%
 - MC statistics (1.4%)⊕ background fluctuation (0.7%)
- 1 fb⁻¹ of additional MC statistics under production
- Cuts still have to be tuned, PID can be improved

Comments on uncertainty: syst

- Breakdown of present systematics:
 - TRK = stat + syst ... evaluated using only 10 pb⁻¹
 - Stat will be pushed down to < 0.5%
 - PID = stat + syst
 - Statistics of CS will be increased by a factor of 4
 - Systematics due to partial coverage of CS -> better tuning of PID method is needed
 - -TRG = stat + syst
 - Dominated by data statistics of downscaled min. bias events
 - Have to study Data/MC agreement on reconstructed events

Signal from "recovery"

- Worse resolution on M_{lep}
 wrt direct, no K track can be used
- Improved PID by TOF, because of longer tracks + NN
- Number of selected events add 37% more statistics to direct search 3500 events

Conclusions

- Preliminary measurement of $\Gamma(K\rightarrow e\nu)/\Gamma(K\rightarrow \mu\nu)=(2.55\pm 0.05\pm 0.05)\times 10^{-5}$ at KLOE, based on 1.7 fb⁻¹
- 2% statistical and 2% systematic error was reached
- Recovery search has to be finalized
- About 1% accuracy goal can be reached
- Stay tuned...