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Outline
 The beauty of the Unitarity Triangle

 Its role in understanding CP violation in the Standard Model
 Sensitivity to New Physics

 The players
 B factories, Tevatron and kaon experiments

 The measurements
 CP violation in K0: the “εK band”
 CP violation in B0: the angles of the Triangle
 B0 mixing and semileptonic B decays: the sides of the Triangle

… and more!

 What have we learned?
 Summary and conclusion
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It all started with kaons…
In 1964 Cronin and Fitch discovered CP violation in the

decays of KL
 mesons: KLπ+π-
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CP violation in the Standard Model
 Explained in Standard Model in 1973 by Kobayashi and Maskawa
 In KM mechanism, CP violation originates from a complex phase in the

quark mixing matrix (CKM matrix)
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A,λ (Cabibbo angle): very well measured
ρ,η: poorly known until recently
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CKM

Going beyond CKM

The (many) strengths of CKM
 Simple explanation of CPV in SM
 It is very predictive: only one CPV phase
 It accommodates all experimental results

 CP violation in Kππ and KLπlν
 CP violation in the B system

New Physics models have many sources of CP violation
 e.g.: MSSM has 43 new CP violating phases!

 Exploit CKM prediction power: use CPV as probe for New Physics

.
Measure CP violation in channels theoretically well understood 

and look for deviations w.r.t. SM expectations 
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Unitarity of CKM implies: V†V = 1  6 unitarity conditions
Of particular interest:

All sides are ~ O(1)  possible to measure both sides and angles!
 CP asymmetries in B meson decays measure α, β and γ
 Sides from semileptonic B decays, B mixing, rare B decays
 Complementary constraints from CP violation in KL (εK)

The Unitarity Triangle
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Unitarity of CKM implies: V†V = 1  6 unitarity conditions
Of particular interest:

All sides are ~ O(1)  possible to measure both sides and angles!
 CP asymmetries in B meson decays measure α, β and γ
 Sides from semileptonic B decays, B mixing, rare B decays
 Complementary constraints from CP violation in KL (εK)

The Unitarity Triangle
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Going beyond the Standard Model
(ρ,η)
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 Two measurements fully define the apex
 This triangle has a base normalized to 1

 All additional measurements probe Physics Beyond SM
 All pieces of the puzzle must fit in the Standard Model
 Inconsistencies can be explained only by New Physics

Precision and redundancy are essential!
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The experiments:

B meson experiments
 Asymmetric B factories:
      BaBar (SLAC) and Belle (KEK)

 .

 Very clean environment
 Very high luminosity

 Tevatron experiments:
 CDF and D0 at Fermilab
 .

 Challenges: high multiplicity and bb trigger

 Complementarity: all b hadrons are produced
 BS , Λb , BC ,…

 
e+e-  !  "(4s) !  BB

1 billion BB pairs (BaBar/Belle)

 
pp collisions at s  ~ 2 TeV
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The experiments:

Kaon Experiments
 Many experiments: 43 years of history!
 Just some examples:

Add plots of … as a collage + some keywords …
 KTeV
 NA31???
 Daphne
 CPLear

KTeV 

CPLearKLOE 

NA48 
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The measurements: εK
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CP violation in KL
 Constraints on Unitarity Triangle come from indirect CP

violation (due to mixing): ε

 World Average in PDG 2006:

 NB: ~3.7σ shift wrt PDG 2004 after including: KTeV, KLOE, NA48
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Kaons’s contribution to the UT: εK

 Experimental error on εK ~ 0.3%
… but large errors on constraints of (ρ,η)
 Bag parameter from Lattice QCD BK=0.86 ± 0.06 ± 0.14 (16% precision)
 Kaon decay constant from leptonic decay rate fK=(159.8 ± 1.5) MeV
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The measurements: β
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BfCP exclusive
reconstruction 

How to measure the CP asymmetry
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CP violation at the B factories

0 0

0 0

( ( ) ) ( ( ) )
( )

( ( ) ) ( ( ) )

sin( ) cos( )

CP CP
CP

CP CP

f f

N B t f N B t f
A t

N B t f N B t f

S mt C mt

! " !
=

! + !

= # " #

2

2

1

1

f

f

f

C
!

!

"
=

+
2

2 Im

1

!

!

=

+

f

f

f

S

 

!
f
=

q

p
"

A
f

A
f

!" i2
e~

0
B

0
B

m
ixin
g

dec
ay

CPfA

CPf
A

(ηf)

 When only one diagram contributes to the final state, |λ|=1

0

Im

f

f

C

S !

="
#

=$
ACP(t) = ± Imλ sin(Δmt)

(CP violation in interference between mixing and decays in B0 )

fCP

t = 0 t



G. Sciolla – M.I.T. How well do we know the  Unitarity Triangle? 17

CP violation in B0 decays: sin2β
For some modes, Imλ is directly and simply related to the angles of

the Unitarity Triangle.

Example:
     B0J/ΨKS: the “golden mode”

 Theoretically clean
 Experimentally clean
 Relatively large BF (~10-4)
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The golden mode for sin2β:

            sin2β in B0 J/ψ K0

B0 tag
_B0 tag

sin(2β) = 0.678 ± 0.026
BaBar+Belle Moriond 2007

B0J/ψ KS (π+π−)
~ 500 fb-1

Nsignal = 7482

Belle ~500 fb-1
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Constraints from β on the UT

 sin2β is measured with a precision of 3.8%
 Most stringent constraint for Unitarity Triangle

 Precision is purely dominated by statistical error
 Will improve in the near future

95% CL 
from other 
measurements

ρ

η
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The measurements: α

γ
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α  from Β0ππ, ρρ, ρπ
 Not as simple as β in the golden mode: tree and penguin diagrams

 ACP(t) will have two contributions:

 S measures UT angle α

 C measures direct CP violation
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Combined constraints on α

Average of BaBar and Belle

 
!  = 92.6

-9.3

+10.7( )°
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CKM fit
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The measurements: γ

γ

α

β

*

*

ud ub

cd cb

V V

V V

*

*

td tb

cd cb

V V

V V

The angle γ
γ

! " arg #
VudVub

$

VcdVcb
$

%

&
'

(

)
*



G. Sciolla – M.I.T. How well do we know the  Unitarity Triangle? 24

A(B
+ ! D

0
K

+
)"V

cs
V
ub

* " # 3ei$

The angle γ
 .

 

Use interference between B+
!D0K+ and  B+

!D0K+ with both 

D0 and D0 decaying to the same final state f 

Cabibbo allowed Cabibbo and color suppressed

 Only tree diagrams contribute: pure Standard Model process!
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CKM fit:

Summary of γ measurements

Average of BaBar and Belle
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The measurements: Rb
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Semileptonic B Decays

 Sensitive to hadronic effects
 Theory error not negligible

 Γ(bc)/Γ(bu)~50
 Vcb precisely measured (±2%)
 Vub  is the challenge
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|Vub| from Inclusive B→Xu l ν

Inclusive B → Xulν
 Hadronic final state is not specified

 bc l ν background is suppressed
using kinematical variables

 Partial rate is measured

 theoretical uncertainties ~5%

Inclusive B → Xu l ν

B

!
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!

u
X

ub
V

l-

WA: 4.49±0.19±0.27
χ2/dof = 6.1/6

Precision on Vub:  ±7.3%
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|Vub/Vcb|and the Unitarity Triangle

   Third most precise constraint in the (ρ,η) plane
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The measurement: Rt
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The measurement of Rt

 Bs/Bd oscillations

 Theory error <5% (LQCD)
 Δmd is precisely measured
 But Bs mixing is very hard…
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BS mixing at the Tevatron

 .
 .

 .
 .

Reconstruction of BS decay 
in hadronic or SL modes

Flavor tagging
QSST~4.8%
QOST~1.5%

Time
reconstruction
σ(ct)~25-70 µm
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CDF result

  

!m
S
= 17.77 ± 0.10 ± 0.07 ps-1    "    

V
td

V
ts

= 0.2060 ± 0.0007
#0.0070

+0.0080

>5σ

B0 mass[GeV/c2]

Exp.
<1%

Theory
~4%
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Impact of ΔmS on Unitarity Triangle

 Measurement vs limit: a factor of 2 improvement
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Standard Model or New Physics?

Do all pieces of the puzzle fit?
CP violatingCP conserving

Tree Loops

All measurements are consistent: 
SM still going strong… 
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Standard Model or New Physics?

   CP violation in Penguins
Complementary test: measure same angle in channels with different

sensitivity to New Physics
 Example β from B0-->J/ΨK0 vs “Penguin Modes” (e.g.: B0φKS)

 SM predicts same ACP(t); small theory errors
 Impact of New Physics could be significant

 New particles in the loop  new CPV phases

 Low branching fractions (10-5)
 Many final states: φ K0, K+ K− KS, η′ KS, KS KS KS, etc.

d d

SM NP

N(η'Ks) ~ 900
BaBar 316 fb-1
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Standard Model or New Physics?

β in penguins vs golden mode

 A trend is visible
 although each  measurement

is compatible with J/ΨKS…

 Naïve average: 0.53±0.05
 ~2.6 σ

 Statistical errors still large…
 More statistics will help

BaBar + Belle average 

Penguin modes

Golden mode
“sin2β”
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Standard Model or New Physics?

   New measurement of |Vtd/Vts|

V
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V
ts ! /"#

= 0.202$0.016

+0.017 (exp) ± 0.015(th)

Average BaBar+Belle

… as expected in the Standard Model…

 |Vtd/Vts| can be measured from decays of Bργ/BK*γ

 Recent results from B factories
 Challenge: BF (B→ργ) ~10-6!
 Theory error ~7.5% (LCSR)
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Conclusion
 Precise test of CP violation in the  Standard Model

 …thanks to many years of hard work by many experiments!
 Tremendous improvement in our knowledge of ρ and η

 Precision on apex ~ 0.04

 CKM is the dominant source of CP violation at low energy
 … since all pieces of the puzzle seem to fit together

 Search for New Physics is just getting interesting
 Expected effects of NP in loops ~10%

 Experimental precision is just getting there…
 First hints of NP in penguins? Statistics will tell

 Exciting times ahead…
 B factories (~2 ab-1 by 2008)
 New experiments (e.g.: LHCb, SuperB)
 Theoretical progress will be crucial (e.g.: Lattice QCD).
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γ from B → DK
 GWL (Gronau, Wyler, London)

 D  CP eigenstate
 Theoretically clean
 Small interference: needs more data

 ADS (Atwood, Dunietz, Soni)
                  is doubly Cabibbo suppressed

 Larger interference
 Needs more data

 Dalitz method (Giri, Grossman, Soffer, Zupan)
 Exploits interference pattern in Dalitz plot in DKSπ+π−

 Combines many modes  statistical advantage
 Small systematics due to Dalitz model Currently 

most sensitive

( )A D f!

D0KSπ+π-
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α from Β0ππ, ρπ,  ρρ
α If tree diagram dominates

α

α

α Large penguin contributions in ππ

α …not so small even in B->ρρ…

α S related to α; C related to direct CPV
α Isospin analysis a la Gronau-London required to extract α...

ACP(t) = sin2α sinΔmt
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