Experimental Review on Lepton Universality Tests and Lepton Flavour Violation Searches at the B-Factories

Alberto Lusiani

INFN and Scuola Normale Superiore Pisa

(on behalf of the BABAR and Belle collaborations)

Outline

- Lepton Universality Tests at B-Factories
- Lepton Flavour Violation Searches at B-Factories

For both topics:

- Standard Model predictions and situation before B-Factories
- B-Factories Results
- B-Factories Prospects

B-Factories Facilities

- asymmetric colliders on Y(4*S*) peak ($\sqrt{s} = 10.58 \,\text{GeV}$)
- B-factories are tau-factories $\sigma(\tau^+\tau^-) \approx 0.9 \text{ nb} \approx \sigma(B\overline{B}) \approx 1.1 \text{ nb}$
- similar general purpose detectors, main difference is PID
 BABAR: Cherenkov detector, Belle: threshold Cherenkov & TOF

Lepton Universality Tests

- Standard Model (SM) predicts that leptons have same couplings
- B-Factories can measure **several relatively less known ingredients** for LU tests below

$$\begin{aligned} \frac{\Gamma_{\tau \to e}}{\Gamma_{\mu \to e}} &\propto \left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \mathsf{BF}(\tau^{-} \to e^{-}\overline{\nu_{e}}\nu_{\tau}) \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{f(m_{e}^{2}/m_{\mu}^{2})r_{EW}^{\mu}}{f(m_{e}^{2}/m_{\tau}^{2})r_{EW}^{\tau}} \\ \frac{\Gamma_{\tau \to \mu}}{\Gamma_{\mu \to e}} &\propto \left(\frac{g_{\tau}}{g_{e}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \mathsf{BF}(\tau^{-} \to \mu^{-}\overline{\nu_{\mu}}\nu_{\tau}) \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{f(m_{e}^{2}/m_{\tau}^{2})r_{EW}^{\mu}}{f(m_{\mu}^{2}/m_{\tau}^{2})r_{EW}^{\tau}} \\ \frac{\Gamma_{\tau \to e}}{\Gamma_{\tau \to \mu}} &\propto \left(\frac{g_{e}}{g_{\mu}}\right)^{2} = \frac{\mathsf{BF}(\tau^{-} \to e^{-}\overline{\nu_{\mu}}\nu_{\tau})}{\mathsf{BF}(\tau^{-} \to \mu^{-}\overline{\nu_{\mu}}\nu_{\tau})} \frac{f(m_{\mu}^{2}/m_{\tau}^{2})}{f(m_{e}^{2}/m_{\tau}^{2})} \\ f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x \ln x \quad \text{(approximating all } m_{\nu} = 0) \\ r_{EW}^{\ell} = 0.9960 \quad \text{(EW radiative corrections, Marciano-Sirlin)} \end{aligned}$$

Lepton Universality Tests (A.Pich, SuperB Workshop, Paris, May 2007)

0.021%

Tau Mass Measurement

	prelim
BELLE	

hep	o-ex/0608046v2	
ſ	systematic contributions	σ , MeV/ c^2
	Beam energy and tracking system	0.26
	Edge parameterization	0.18
	Limited MC statistics	0.14
	Fit range	0.04
	Momentum resolution	0.02
	Model of $\tau \rightarrow 3\pi v_{\tau}$	0.02
	Background	0.01
	Total	0.35

 $m_{ au} = (1776.61 \pm 0.13 \pm 0.35) \,\mathrm{MeV}$

- beam energy to 1.5 MeV with B masses (0.5 MeV)
- also data/MC di-muon inv.mass vs. beam energy
 - ► 3 MeV/10.58 GeV \rightarrow 0.15 MeV at m_{τ}

- however, $m_{\tau^+} m_{\tau^-} = (0.05 \pm 0.23 \pm 0.14) \text{ MeV}/c^2$ improves upper limit on $(m_{\tau^+} - m_{\tau^-})/m_{\tau} < 2.8 \cdot 10^{-4}$ (PDG2006: < 3 · 10⁻³)
- threshold experiments expected to be more suitable for this measurement:
 - KEDR: $m_{\tau} = (1776.80^{+0.25}_{-0.22} \pm 0.15) \text{ MeV}$ (0.016% precision) (submitted to Pis'ma ZhETF, vol.85, iss.8)

 $414 \, \text{fb}^{-1}$

BES-III also plans to improve considerably on m_{τ}

CHES AT THE B-FACTORIES

Tau Lifetime Measurement

Selection

- tag side $\tau \rightarrow evv$, signal $\tau \rightarrow 3$ -prong
- very high purity (99.4%), low efficiency (0.2%)

Mean Decay Length

- reconstruct transverse decay length λ_{τ}^{t}
- $\lambda_{\tau} = \lambda_{\tau}^{t} / \sin \theta_{3-\text{prong}}$ (approx: $P_{\tau} \parallel P_{3-\text{prong}}$)
- no weight based on λ_{τ} estimated errors
- weight to equalize ϕ acceptance in 60 bins
- average λ_{τ} measurements $\rightarrow \langle \lambda_{\tau} \rangle$
- $\langle \lambda_{\tau} \rangle$ stat. error: variance in 100 sub-samples

Mean Lifetime

• $\langle P_{\tau} \rangle$ from MC, using beam energies

$$\langle \tau_{\tau} \rangle = \langle \lambda_{\tau} \rangle - \frac{1}{4}$$

• subtract measurement bias using MC

Hadronic backgrounds

• light quarks: $u\overline{u}$, $d\overline{d}$, $s\overline{s} = q\overline{q}$

BABAR preliminary

- heavy quarks: *cc* , *BB*
- contamination from MC, with checks on data

 $80 \, {\rm fb}^{-1}$

- decay length distribution from MC
- \rightarrow subtract lifetime bias

Bhabha and two-photon backgrounds

- determine contamination from data
- decay length from data control samples
- $\bullet \longrightarrow$ subtract lifetime bias

Blind analysis

KAON'07, KAON INTERNATIONAL CONFERENCE – FRASCATI - MAY 21-25, 2007

 $\tau_{\tau} = 289.40 \pm 0.91 \text{ (stat.)} \pm 0.90 \text{ (syst.) fs}$ preliminary

Tau04, Nara, Nucl.Phys. B (Proc.Suppl.) 144 (2005) 105

no improvements expected outside B-Factories

Updated Lepton Universality Test using BABAR preliminary τ_{τ} result

SM predicts $BF(\tau \rightarrow e/\mu) = f(G_F, m_\tau, m_e, m_\mu) \cdot \tau_\tau$

τ Branching Fractions

Prospects on Lepton Universality Tests at B-Factories

- modest progress, systematics typically larger that at LEP
- tau mass measurement useful check of threshold measurements
- tau lifetime: should aim at 0.1% precision, least precise ingredient in several tests
- should try leptonic BF measurements for μ/e universality, but prospects uncertain (manpower)
- expect super B-Factories role uncertain/none because systematic limits reached
- NuTev anomaly: Neutral/Charged Current ratio in muon (anti)neutrino nucleon scattering: $g_1^2 = 0.30005 \pm 0.00137$, which is 3σ from SM prediction $g_1^2 = 0.3042$
 - \rightarrow important to improve checks on SM predictions of coupling constants at 10⁻³ level

Lepton Flavour Violation Searches

♦ forbidden in "classic" SM

- highly suppressed in SM with neutrino oscillations
- → Search New Physics / Constrain NP models
- B-Factories are effective for LFV searches involving tau lepton
 - ▶ some NP models expect larger LFV for τ vs. e/μ

		τ→μγ	τ→III
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908 Pham EPJ C8 (1999) 513	10 ⁻⁵⁴ - 10 ⁻⁴⁰	10-14
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10 ⁻¹⁰	10-7
SM + heavy Maj v _R	M + heavy Maj v _R Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008		10-10
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10 ⁻⁸	10 -10
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10 ⁻⁹

KAON'07, KAON INTERNATIONAL CONFERENCE – FRASCATI - MAY 21-25, 2007

LFV Searches before B-Factories

SUSY SO(10) + seesaw Masiero et al., NJP 6 (2004) 202

Blind analyses

KAON'07, KAON INTERNATIONAL CONFERENCE – FRASCATI - MAY 21-25, 2007

Properties of LFV violating tau decays (in CM system)

- 94 events in 5 σ region (88.4 ± 7.4 MC predicted)
- 2D UEML fit in $2\sigma \Delta M \Delta E$ signal region
 - BKG shapes from MC
 - BKG normalizations from data 2D sideband

•
$$s = -3.9^{+3.6}_{-3.2}$$
 $b = 13.9^{+6.0}_{-4.3}$

♦ toy MC simulation with input signal increased until 90% fits otbain s > -3.9 (more than observed signal)
 → s < 2 (90% CL)

•
$$P(s < -3.9) = 25\%$$
 for zero signal simulation

- ♦ $BF(\tau \to \mu \gamma) < 0.45 \cdot 10^{-7} (90\% CL)$
- BKG: $\tau \tau \gamma$ (79%), $\mu \mu \gamma$ (16%), $ee \gamma \rightarrow ee \mu \mu$ (5%)
- arXiv:0705.0650[hep-ex], submitted to PLB

- 55 events in 5 σ region (42.8 ± 3.7 MC predicted)
- 2D UEML fit in $2\sigma \Delta M \Delta E$ signal region
 - BKG shapes from MC
 - BKG normalizations from data 2D sideband

►
$$s = -0.14^{+2.18}_{-2.45}$$
 $b = 5.14^{+3.86}_{-2.81}$

♦ toy MC simulation with input signal increased until 90% fits otbain s > -0.14 (more than observed signal)
 → s < 2 (90% CL)

•
$$P(s < -0.14) = 48\%$$
 for zero signal simulation

- ♦ $BF(\tau \to e\gamma) < 1.2 \cdot 10^{-7} (90\% CL)$
- ♦ BKG: ττγ (82%), eeγ (18%)
- arXiv:0705.0650[hep-ex], submitted to PLB

PRL 98.061803 (2007)

B-Factories LFV limits

	Belle		BABAR	
	UL90	Lumi	UL90	Lumi
	(10 ⁻⁷)	(fb ⁻¹)	(10 ⁻⁷)	(fb ⁻¹)
$\mu\gamma$	0.5*	535	0.7	232
eγ	1.2*	535	1.1	232
$\mu\eta$	0.65*	401	1.5	339
$\mu\eta'$	1.3*	401	1.3	339
eη	0.92*	401	1.6	339
$e\eta'$	1.6*	401	2.4	339
$\mu\pi^0$	1.2*	401	1.5	339
$e\pi^0$	0.8*	401	1.3	339
lll	2–4	87	1–3	92
<i>ℓhh</i> ′	2–16	158	1–5	221
μV^0	2.8–7.7	158		
eV^0	3.0-7.3	158		

	Belle		BABAR	
	UL90	Lumi	UL90	Lumi
	(10 ⁻⁷)	(fb^{-1})	(10 ⁻⁷)	(fb^{-1})
μK _S	0.49	281		
eK _S	0.56	281		
$\Lambda \pi, \overline{\Lambda} \pi$			5.8-5.9*	237
$\Lambda K, \overline{\Lambda} K$			7.2–15*	237
$\sigma_{\ell au}/\sigma_{\mu \mu}$			40-89	211

(* preliminary)

BABAR/ Belle $\tau \rightarrow \mu \gamma$ constraints on SUSY SO(10) with seesaw

SUSY SO(10) + seesaw Masiero et al., NJP 6 (2004) 202

KAON'07, KAON INTERNATIONAL CONFERENCE – FRASCATI - MAY 21-25, 2007

Belle $\tau \rightarrow \mu \eta$ constraints on SUSY Higgs Mediated LFV

$$\begin{aligned} \mathsf{BF}(\tau^- \to \mu^- \eta) &= \\ &= 8.4 \times 10^{-7} \left(\frac{\tan \beta}{60}\right)^6 \left(\frac{100 \text{GeV}/c^2}{m_A}\right)^4 \\ \text{M.Sher, PRD 66.057301 (2002)} \\ \text{Plot from M.Carena et al. EPJ C95.601 (2003)} \\ \text{with Belle limit by T.Ohshima (Tau06)} \end{aligned}$$

LFV Searches Prospects

- B-factories improved LFV tau BF limits by factor 10–100
 - ▶ whenever BKG O(1) at constant efficiency, upper limits improve $\propto \mathcal{L}$ (channels with only charged tracks tend to be in this regime right now)
 - otherwise (BKG limited) upper limits improve $\propto \sqrt{\mathcal{L}}$ (channels with photons, e.g. $\tau \rightarrow \mu \gamma$, appear to be entering this regime now)
- limits can improve by factor 2-4 analyzing all planned B-Factories yield ($2 ab^{-1}$)
- Super B-Factories expected to improve LFV limits again by factor 10–100 must care about:
 - detector hermeticity
 - resolution on neutral energy / angle

Conclusions

- large event statistics, but large systematics require hard work
- improvements on KK2f cross section precision soon
- B-factories improved LFV tau BR limits by factor 10–100
- limits can improve by factor 2–4 analyzing all planned B-Factories yield (2 ab^{-1})
- Super B-Factories expected to improve LFV limits again by factor 10–100