KAON´07 Laboratori Nazionali di Frascati dell´INFN May 21-25, 2007

Cecilia Tarantino Technical University Munich

Fⁱ's: **short-distance Loop Functions (Penguins, Boxes)** [from perturbation theory] (η^{i}_{QCD}) 's: QCD corrections [from RG improved perturbation theory] **B**_i's: **long-distance Parameters** [the most uncertain: from experiments, Lattice, ...]

CMFV: (pragmatic approach) a CMFV Model has to satisfy two constraints: the only source of flavour-violation is the CKM, the only operators are the SM ones [A.J. Buras et al., hep-ph/0007085] MFV: (top-down approach) in building a MFV Model the SM Yukawa couplings are the only *building-blocks* of flavour violation [G.D´Ambrosio et al., hep-ph/0207036] General NP beyond MFV: new sources of flavour violation (Vⁱ_{NEW}) can appear

The Most Appealing Models

CMFV

Littlest Higgs (LH) [N.Arkani-Hamed, A.G.Cohen, E.Katz, A.E.Nelson, hep-ph/0206021] (Higgs= Goldstone boson of a global symmetry SU(5) \xrightarrow{f} SO(5), ``little hierarchy problem'' cured by heavy partners with the same spin-statistics (W_H, Z_H, A_H, T, Φ) f is constrained to be large (>2-3 TeV) by electroweak (ew) precision tests)

<u>Appelquist-Cheng-Dobrescu (ACD)</u> [T.Appelquist, H.C.Cheng, B.A.Dobrescu, hep-ph/0012100] (1 universal extra-dimension \rightarrow SM particles propagate in 5 dimensions, in 4 dimensions Kaluza-Klein modes appear, KK—Parity conservation, only one additional free parameter: 1/R > 200-300 GeV from ew precision tests)

(General) MFV

MSSM [P.Fayet (1976,1977,1979), G.R.Farrar, P.Fayet(1978),...] with MFV

(boson-fermion symmetry,minimal spectrum (sparticles,2 Higgs doublets,tanβ=v_u/v_d), R-parity)

•low tan $\beta \rightarrow \text{CMFV}(\text{true only if } \mu \text{ is small})$ [W.Altmannshofer, A.J.Buras, D.Guadagnoli, hep-ph/0703200] •large tan $\beta \rightarrow$ new operators are generated by Higgs contributions

Beyond MFV

<u>MSSM [P.Fayet (1976,1977,1979), G.R.Farrar, P.Fayet(1978),...]</u> with a general Flavour Structure (boson-fermion symmetry, minimal spectrum (sparticles, 2 Higgs doublets), R-parity,

27 new Flavour Changing couplings along the squark lines)

Littlest Higgs with T-Parity (LHT) [H.C.Cheng, I.Low, hep-ph/0308199, hep-ph/0405243] (LH + a discrete symmetry (T-Parity) \rightarrow heavy particles cannnot appear at tree-level \rightarrow ew precision tests are less constraining (f>500GeV), in addition to W_H, Z_H, A_H, T, Φ , new mirror fermions with new flavour interactions)

<u>Minimal 3-3-1 Model [P.H.Frampton(1992), F.Pisano, V.Pleitez(1992), R.Foot et al.(1993)]</u> (extended gauge group SU(3)_c x SU(3)_L x U(1)_x, 3 generations required for anomaly cancellation and QCD asymptotic freedom, new heavy quarks and gauge bosons, FCNC's can be trasmitted at tree-level by the new neutral gauge boson Z' and involve a new mixing matrix)

$$\begin{array}{c} \mathbf{K}_{L} \rightarrow \pi^{0} \ \mathbf{e}^{*} \ \mathbf{e}^{*} \ \mathbf{and} \ \mathbf{K}_{L} \rightarrow \pi^{0} \ \mu^{*} \ \mu^{*} \end{array} \\ \hline \mathbf{Promising modes} \\ \textbf{Three contributions of comparable size:} \\ \textbf{a) direct CP-violating (short-distance \rightarrow clean),} \\ \textbf{b) indirect CP-violating ($\leftrightarrow exp. observation of $\mathbf{K}_{S} \rightarrow \pi^{0} \ l^{*} \ l^{*}, \ c) \ long-distance CP-conserving ($\leftrightarrow exp. studies of $\mathbf{K}_{L} \rightarrow \pi^{0} \ \gamma \ \gamma) \\ \hline \mathbf{C}_{L} \qquad \mathbf{C}_{L$$

The two-photon CP-conserving contribution $K_L \rightarrow \pi^0 (\gamma \gamma)_{J=0,2} \rightarrow \pi^0 (7^+/1)_{J=0,2}$ represents the main difference between muon and electron channels: $J^{CP}=0^{++}$ is helicity suppressed and can be neglected in the electron mode

Different NP effects can be disentangled by measuring both rates

F.Mescia, C.Smith, S.Trine, hep-ph/0606081

See talk by Christopher

SM Predictions and Experimental Measurements

Golden Modes	SM	Experiment	
$K^+ \rightarrow \pi^+ \nu \overline{\nu}$	$\begin{array}{c} \left(7.8\pm0.8\right) \cdot 10^{-11} \\ \text{F.Mescia and C.Smith,} \\ \text{hep-ph/0705.2025} \end{array}\right.$	$(14.7^{+13}_{-8.9}) \cdot 10^{-11} \frac{\text{E787}}{\text{E949}}$	
$K_{L} \rightarrow \pi^0 \ v \ \overline{v}$	$(2.5\pm0.4)\cdot10^{-11}$ F.Mescia and C.Smith, hep-ph/0705.2025	$< 2.1 \cdot 10^{-7}$ E391a	
$K_L \rightarrow \pi^0 e^+ e^-$	$(3.5^{+1.0}_{-0.9}) \cdot 10^{-11}$ F.Mescia et al. hep-ph/0606081	$< 2.8 \cdot 10^{-10}$ KTeV	
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	$(1.4 \pm 0.3) \cdot 10^{-11}$ F.Mescia et al. hep-ph/0606081	$< 3.8 \cdot 10^{-10}$ KTeV	
	Very clean	Still a lot of room for NP	

Rare Kaon Decays within Constrainedand General-MFV

CMFV analysis of C.Bobeth at al., hep-ph/0505110:

Imposing available information from the Universal Unitary Triangle Analysis and from the measurements of Br(B \rightarrow X_s γ), Br(B \rightarrow X_s /⁺ /) and Br(K⁺ \rightarrow π ⁺ $\nu \overline{\nu}$)

 \rightarrow Determination of the allowed range for the short-distance function C(Z-penguin) \rightarrow Evaluation of the upper bounds for Rare Decays

Branching Ratios	CMFV (95%)	SM (95%)	SM (68%)	Exp	NP effects in box and gluon-penguin diagrams
$Br\!\left(K^{\scriptscriptstyle +}\to\pi^{\scriptscriptstyle +}\nu\overline{\nu}\right)\!\cdot\!10^{11}$	<11.9	<10.9	8.3±1.2	$14.7^{+13.0}_{-8.9}$	X ^{NP} ≈C ^{NP}
$Br\bigl(K_L^{} \to \pi^0 \nu \overline{\nu}\bigr) \cdot 10^{11}$	<4.6	<4.2	3.1±0.6	<5.9·10 ⁴	

2007 update by U.Haisch and A.Weiler, including constraints from R_b^0 , A_b , $A_b^{0,b}$, R_{FB}^0 :

Existing constraints forbid significant enhancements (<30%)
Rare Kaon Decays are potentially the most constraining
[Next Decade Scenario with ~5% exp. uncertainty is looked forward]

•The negative (non-SM) sign of C is now excluded •Br's are also bounded from below

Branching Ratios	CMFV (95%)	SM (95%)	Exp.
Br(K⁺ → π⁺v⊽) ·10¹¹	[4.3,10.7]	[5.4,9.1]	14.7 ^{+13.0} -8.9
$Br(K_L \rightarrow \pi^0 v \overline{v}) \cdot 10^{11}$	[1.6,4.4]	[2.2,3.5]	<2.1• 10 ⁴

In Specific CMFV Models:

Littlest Higgs (LH) [without T-parity]

Ew precision tests constrain the NP scale to be large: f > 2-3 TeV

 \rightarrow The enhancements of Br(K $\rightarrow \pi v \overline{v}$) amount to at most 15% A.J.Buras et al., hep-ph/0607189

Appelquist-Cheng-Dobrescu [1 universal extra-dimension]

 For 1/R=200 GeV, Br's are enhanced by 16% (K⁺) and 17% (K_L)
 For 1/R=300 GeV (from ew tests if m_H<250GeV) the enhancements are twice smaller A.J.Buras, M.Spranger, A.Weiler, hep-ph/0212143

•Even smaller enhancements would be found with the new NNLO SM prediction for $b \rightarrow s \gamma$ by M.Misiak et al., hep-ph/0609232

<u>MSSM with MFV and moderate (<30) tanβ</u> A.J.Buras, A.Romanino, L.Silvestrini, hep-ph/9712398 G.Colangelo, G.Isidori, hep-ph/9808487

The deviations from the SM in the two Br($K \rightarrow \pi v v$) are naturally small (~10%) See talk by but could saturate the model-independent bound [G.Isidori at al., hep-ph/0604074] See talk by Christopher

At large tanβ, charged-Higgs loops yield the new operator (sd)_{V+A} (vv)_{V-A} not suppressed by m_{d,s}
 However, its impact on rare K decays is significant only beyond MFV [G.Isidori, P.Paradisi, hep-ph/0601094]

What about $K_{L} \rightarrow \pi^{0} / t$ within CMFV?

•In general, models without new operators (like CMFV models) induce smaller effects (<10%) for $K_{L} \rightarrow \pi^{0} \not\vdash f$ than for $K \rightarrow \pi \nu \overline{\nu}$ •Still, NP effects in vector (Q_{7V}) and axial-vector (Q_{7A}) can be disentangled by measuring both electron and muon modes

Rare Kaon Decays beyond MFV

MSSM with a general Flavour Structure

To obtain simple analytic formulae for $s \rightarrow d$ transitions, it is useful to work in a basis where $d^{i}_{L} - \tilde{d}^{j}_{L} - N_{n}$ and $d^{i}_{L} - \tilde{u}^{j}_{L} - \chi_{n}$ are flavour diagonal and to expand (non-diagonal) sfermion mass matrices

Flavour non-diagonality is brought by squark propagators

<u>3x3 non-diagonal flavour matrices</u> expanded in small off-diagonal entries: e.g., $(\delta^{U}_{LL})_{ij} \equiv (m^{2}_{U})^{ij}_{LL} / \tilde{m}^{2}$

The dominant NP effects in rare kaon decays come from chargino up-squark loops (non-MFV terms in the LR up sector, double ins. not suppressed by O(M_W/M_{SUSY}) nor CKM) and charged-Higgs top-quark loops

(non-MFV terms in the RR down sector, not suppressed by $m_{d,s}$ and enhanced by $tan^4\beta$)

Blanke, Buras, Poschenrieder, Recksiegel, C.T., Uhlig, Weiler, hep-ph/0610298

Different values of β from S_{Ψ KS} and K_L →π⁰ v v would be a clear signal of NP beyond MFV
 In LHT, the universality between B and K systems can be strongly violated

MSSM beyond MFV A.J.Buras, L.Silvestrini, hep-ph/9811471; A.J.Buras et al., hep-ph/9908371

 Data on ε le may constraint considerably the double LR insertions and the corresponding enhancement of rare kaon decays
 Significant enhancements are still possible

•With an improved theoretical accuracy, ϵ / ϵ could strongly constrain rare K decays •If the large-N values (R₆.R₈)=(1.0,1.0) are confirmed, O(10)-enhancements of K_L are excluded

Large NP signals could be seen in rare K decays (without large effects in B-systems)
 In particular, in MSSM or LHT, K_L can be enhanced by an order of magnitude
 Specific correlations could help in discriminating NP models

$\textbf{K}_{L} \rightarrow \! \pi^{\textbf{0}} \, \textbf{e}^{\scriptscriptstyle +} \, \textbf{e}^{\scriptscriptstyle -} \, \textbf{and} \, \textbf{K}_{L} \rightarrow \! \pi^{\textbf{0}} \, \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$

 •The recent theoretical control over the long-distance components makes K_L→π⁰ /* / decays very clean and highly sensitve to NP
 [G.D´Ambrosio et al., hep-ph/9808289, G.Buchalla et al., hep-ph/0308008, G.Isidori et al., hep-ph/0404127]

•Different µ and e masses allow to probe helicity-suppressed effects

•NP enhancements by a factor 2-5 are possible (MSSM, LHT, 3-3-1)

Rare K Decays are unique probes of NP

Accurate experimental measurements are looked forward! This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.