$F_{n a i l}^{\text {ala }} 1$ A

Theoretical progress on $\pi \pi$ scattering lengths and phases

Gilberto Colangelo

$$
\underset{\substack{\text { UNIVERSITÄT } \\ \text { BERN }}}{\substack{b}}
$$

KAON '07, Frascati, May 23. 2007

Outline

Introduction
What do we learn?

Precision of the chiral prediction
Roy equations
Chiral symmetry + dispersive methods

Alternative approaches

Relevant lattice calculations

Summary and conclusions

Why is $\pi \pi$ scattering interesting

- the pions are the quasi-Goldstone bosons of spontaneous chiral symmetry breaking of QCD
- their interaction vanishes in the limit of zero momenta and quark masses
- a precision study of the departure from this limit thoroughly tests our understanding of strong interactions in the nonperturbative regime (e.g. through lattice calculations)
- multipion final states are ubiquitous in hadronic decays: understanding the $\pi \pi$ interaction is important for many other reactions
- at low energy the two S-wave scattering lengths are the essential parameters: e.g. the parameters of the σ resonance are determined, in a model-independent way, by a_{0}^{0} and a_{0}^{2}

Determination of the σ resonance parameters

Figure from H. Leutwyler

Low-energy theorem for $\pi \pi$ scattering

$$
\mathcal{M}\left(\pi^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-}\right) \equiv A(s, t, u)=\text { isospin invariant amplitude }
$$

Low energy theorem: $\quad A(s, t, u)=\frac{s-M^{2}}{F^{2}}+\mathcal{O}\left(p^{4}\right)$ Weinberg 1966

$$
M^{2}=B\left(m_{u}+m_{d}\right) \quad M_{\pi}^{2}=M^{2}+O\left(m_{q}^{2}\right), \quad F_{\pi}=F+O\left(m_{q}\right)
$$

All physical amplitudes can be expressed in terms of $A(s, t, u)$

$$
T^{l=0}=3 A(s, t, u)+A(t, s, u)+A(u, t, s) \Rightarrow T^{l=0}=\frac{2 s-M_{\pi}^{2}}{F_{\pi}^{2}}
$$

S wave projection ($\mathrm{I}=0$)

$$
t_{0}^{0}(s)=\frac{2 s-M_{\pi}^{2}}{32 \pi F_{\pi}^{2}} \quad a_{0}^{0}=t_{0}^{0}\left(4 M_{\pi}^{2}\right)=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}=0.16
$$

Low-energy theorem for $\pi \pi$ scattering

$$
\mathcal{M}\left(\pi^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-}\right) \equiv A(s, t, u)=\text { isospin invariant amplitude }
$$

Low energy theorem: $\quad A(s, t, u)=\frac{s-M^{2}}{F^{2}}+\mathcal{O}\left(p^{4}\right) \quad$ Weinberg 1966

$$
M^{2}=B\left(m_{u}+m_{d}\right) \quad M_{\pi}^{2}=M^{2}+O\left(m_{q}^{2}\right), \quad F_{\pi}=F+O\left(m_{q}\right)
$$

All physical amplitudes can be expressed in terms of $A(s, t, u)$

$$
T^{l=2}=A(t, s, u)+A(u, t, s) \Rightarrow T^{l=2}=\frac{-s+2 M_{\pi}^{2}}{F_{\pi}^{2}}
$$

S wave projection (l=2)

$$
t_{0}^{2}(s)=\frac{2 M_{\pi}^{2}-s}{32 \pi F_{\pi}^{2}} \quad a_{0}^{2}=t_{0}^{2}\left(4 M_{\pi}^{2}\right)=\frac{-M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}=-0.045
$$

Chiral predictions for a_{0}^{0} and a_{0}^{2}

Quark mass dependence of M_{π} and F_{π} :

$$
\begin{aligned}
M_{\pi}^{2} & =M^{2}\left(1-\frac{M^{2}}{32 \pi^{2} F^{2}} \bar{\ell}_{3}+O\left(M^{4}\right)\right) \\
F_{\pi} & =F\left(1+\frac{M^{2}}{16 \pi^{2} F^{2}} \bar{\ell}_{4}+O\left(M^{4}\right)\right)
\end{aligned}
$$

Phenomenological determinations (indirect):

$$
\begin{aligned}
& \bar{\ell}_{3}=2.9 \pm 2.4 \\
& \bar{\ell}_{4}=4.4 \pm 0.2
\end{aligned}
$$

Gasser \& Leutwyler (84)
GC, Gasser \& Leutwyler (01)

Lattice calculations determine these constants directly

Chiral predictions for a_{0}^{0} and a_{0}^{2}

Sensitivity to the quark condensate

The constant $\bar{\ell}_{3}$ determines the NLO quark mass dependence of the pion mass

$$
\begin{aligned}
& M_{\pi}^{2}=2 B \hat{m}\left[1+\frac{2 B \hat{m}}{16 \pi F_{\pi}^{2}} \bar{\ell}_{3}+\mathcal{O}\left(\hat{m}^{2}\right)\right] \\
& \hat{m}=\frac{m_{u}+m_{d}}{2} \quad B=-\frac{1}{F^{2}}\langle 0| \bar{q} q|0\rangle
\end{aligned}
$$

Sensitivity to the quark condensate

The constant $\bar{\ell}_{3}$ determines the NLO quark mass dependence of the pion mass

$$
\begin{aligned}
& M_{\pi}^{2}=2 B \hat{m}\left[1+\frac{2 B \hat{m}}{16 \pi F_{\pi}^{2}} \bar{\ell}_{3}+\mathcal{O}\left(\hat{m}^{2}\right)\right] \\
& \hat{m}=\frac{m_{u}+m_{d}}{2} \quad B=-\frac{1}{F^{2}}\langle 0| \bar{q} q|0\rangle
\end{aligned}
$$

Its size tells us what fraction of the pion mass is given by the Gell-Mann-Oakes-Renner term

$$
M_{\mathrm{GMOR}}^{2} \equiv 2 B \hat{m}
$$

or how large is the quark condensate, the order parameter of chiral symmetry breaking. Jan Stern and collaborators have emphasized this since long!

Sensitivity to the quark condensate

The E865 data on $K_{\ell 4}$ imply that
GC, Gasser and Leutwyler PRL (01)

$$
M_{\mathrm{GMOR}}>94 \% M_{\pi}
$$

Situation after new data?

Higher orders

Higher order corrections are suppressed by $\mathcal{O}\left(m_{q}^{2} / \Lambda^{2}\right)$
$\Lambda \sim 1 \mathrm{GeV} \Rightarrow$ expected to be a few percent

$$
a_{0}^{0}=0.200+\mathcal{O}\left(p^{6}\right) \quad a_{0}^{2}=-0.0445+\mathcal{O}\left(p^{6}\right)
$$

Gasser and Leutwyler (84)

Higher orders

Higher order corrections are suppressed by $\mathcal{O}\left(m_{q}^{2} / \Lambda^{2}\right)$
$\Lambda \sim 1 \mathrm{GeV} \Rightarrow$ expected to be a few percent

$$
a_{0}^{0}=0.200+\mathcal{O}\left(p^{6}\right) \quad a_{0}^{2}=-0.0445+\mathcal{O}\left(p^{6}\right)
$$

The reason for the rather large correction in a_{0}^{0} is a chiral log

$$
a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}\left[1+\frac{9}{2} \ell_{\chi}+\ldots\right] \quad a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}\left[1-\frac{3}{2} \ell_{\chi}+\ldots\right]
$$

$$
\ell_{\chi}=\frac{M_{\pi}^{2}}{16 \pi^{2} F_{\pi}^{2}} \ln \frac{\mu^{2}}{M_{\pi}^{2}}
$$

Gasser and Leutwyler (84)

Higher orders

Higher orders

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations
Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a_{0}^{0} and a_{0}^{2}

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a_{0}^{0} and a_{0}^{2}
Output: the full $\pi \pi$ scattering amplitude below 0.8 GeV Note: if a_{0}^{0}, a_{0}^{2} are chosen within the universal band
the solution exists and is unique

Roy equations

Unitarity effects can be calculated exactly using dispersive methods

Unitarity, analyticity and crossing symmetry \equiv Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a_{0}^{0} and a_{0}^{2}
Output: the full $\pi \pi$ scattering amplitude below 0.8 GeV
Note: if a_{0}^{0}, a_{0}^{2} are chosen within the universal band
the solution exists and is unique

Numerical solutions of the Roy equations Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s) Ananthanarayan, GC, Gasser and Leutwyler (00) Descotes-Genon, Fuchs, Girlanda and Stern (01)

Numerical solutions

Numerical solutions

Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold $\left(a_{0}^{0}, a_{0}^{2}\right)$ is not mandatory

Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold $\left(a_{0}^{0}, a_{0}^{2}\right)$ is not mandatory
The freedom in the choice of the subtraction point can be exploited to use the chiral expansion where it converges best, i.e. below threshold

Combining CHPT and dispersive methods

Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved if CHPT is used only below threshold

CHPT at threshold

$$
\begin{array}{rcccc}
a_{0}^{0}= & 0.159 & \rightarrow & 0.200 & \rightarrow \\
\hline & 0.216 \\
10 \cdot a_{0}^{2}= & -0.454 & \rightarrow & -0.445 & \rightarrow \\
& -0.445 \\
p^{2} & p^{4} & p^{6}
\end{array}
$$

GC, Gasser and Leutwyler (01)

Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved if CHPT is used only below threshold

CHPT at threshold

$$
\begin{array}{rccc}
a_{0}^{0}= & 0.159 \rightarrow & 0.200 & \rightarrow \\
\hline 10 \cdot a_{0}^{2}= & -0.216 \\
& p^{2} & p^{4} & p^{6}
\end{array}
$$

CHPT below threshold + Roy

$$
\begin{aligned}
a_{0}^{0} & =0.197 \rightarrow 0.2195 \rightarrow 0.220 \\
10 \cdot a_{0}^{2} & =-0.402 \rightarrow-0.446 \rightarrow-0.444
\end{aligned}
$$

GC, Gasser and Leutwyler (01)

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta \ell_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta l_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Adding errors in quadrature

$$
\left[\Delta_{r^{2}}=6.5 \%, \Delta \ell_{3}=2.4\right]
$$

$$
\begin{array}{rlr}
a_{0}^{0} & =0.220 \pm 0.005 \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.01 \\
a_{0}^{0}-a_{0}^{2} & =0.265 \pm 0.004
\end{array}
$$

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta \ell_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Adding errors in quadrature

$$
\left[\Delta_{r^{2}}=6.5 \%, \Delta \ell_{3}=2.4\right]
$$

$$
\begin{array}{rlr}
a_{0}^{0} & =0.220 \pm 0.005 \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.01 \\
a_{0}^{0}-a_{0}^{2} & =0.265 \pm 0.004
\end{array}
$$

Pelaez and Yndurain have criticized these results
Claim 1: our input above 1.4 GeV is not correct (PY 03)
The criticism has been answered (Caprini et al. 03)

Final results

$$
\begin{aligned}
a_{0}^{0} & =0.220 \pm 0.001+0.027 \Delta_{r^{2}}-0.0017 \Delta \ell_{3} \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.003-0.04 \Delta_{r^{2}}-0.004 \Delta \ell_{3}
\end{aligned}
$$

where

$$
\left\langle r^{2}\right\rangle_{s}=0.61 \mathrm{fm}^{2}\left(1+\Delta_{r^{2}}\right) \quad \bar{\ell}_{3}=2.9+\Delta \ell_{3}
$$

Adding errors in quadrature

$$
\left[\Delta_{r^{2}}=6.5 \%, \Delta \ell_{3}=2.4\right]
$$

$$
\begin{array}{rlr}
a_{0}^{0} & =0.220 \pm 0.005 \\
10 \cdot a_{0}^{2} & =-0.444 \pm 0.01 \\
a_{0}^{0}-a_{0}^{2} & =0.265 \pm 0.004
\end{array}
$$

Pelaez and Yndurain have criticized these results
Claim 2: our calculation for $\left\langle r^{2}\right\rangle_{s}$ is not correct (Y, 04)
The criticism has been answered (Ananthanarayan et al. 04)

The analysis of Stern et al.

- Stern and collaborators advocate that it is even more interesting not to attempt any (indirect) determinations of $\bar{\ell}_{3}$ and $\bar{\ell}_{4}$
- they also use the solutions of the Roy equations in order to analyze the data, and with them translate low-energy data into values of the scattering lengths
- our two independent numerical solutions of the Roy equations agree - the outcome of our analyses agree also

The analysis of Peláez and Ynduráin

Peláez and Ynduráin have proposed a different approach and analyze the data with a parametrization which

- is simple, fits the data and has the correct cut structure at low $s>0$
- approximately satisfies forward dispersion relations
- does not take into account chiral symmetry constraints

Disregarding technical differences, a few essential remarks:

- data at various energies are treated democratically - on the other hand some sets of data are clearly inconsistent with each other
- no use of crossing symmetry - the left-hand cut is not properly implemented
- the use of dispersion relations is limited - it is not required that they are satisfied exactly - in a sense, data and theory are also treated democratically

Other analyses

- Kamiński, Leśniak and Loiseau have also worked out numerical solution of the Roy equations with the aim of resolving an ambiguity among possible phase-shift solutions in the analysis of $\pi N \rightarrow \pi \pi N$ data (Cracow-Cern-Munich)
- various other parametrizations/analyses of the $\pi \pi$ scattering amplitude exist in the literature, constructed with different goals
e.g. D. Bugg $(96,05,06)$, Maiorov and Patarakin $(03,05)$, Achasov and Kiselev (05), etc.

Numerical comparison

Phenomenological analyses

	DFGS	KLL	PY
a_{0}^{0}	0.228 ± 0.032	0.224 ± 0.013	0.230 ± 0.015
$-10 \cdot a_{0}^{2}$	0.382 ± 0.038	0.343 ± 0.036	0.480 ± 0.046
$\left(\delta_{0}^{0}-\delta_{0}^{2}\right)_{\mid s=M_{K}^{2}}$	47.1°	$37^{\circ}-\delta_{0}^{2}\left(M_{K}^{2}\right)$	$52.9^{\circ} \pm 1.6^{\circ}$
		$<49^{\circ}$	

Analysis based on chiral symmetry

DFGS=Descotes-Genon, Fuchs, Girlanda and Stern, KLL=Kamiński, Leśniak and Loiseau,

Phase shifts

Peláez and Ynduráin (04)
The "shoulder" is incompatible with dispersion relations Leutwyler (06)

Phase shifts

GC, Gasser and Leutwyler (01)

Phase shifts

GC, Gasser and Leutwyler (01)
The P-wave phase is relevant for $a_{\mu}^{\text {hyp }}$

Lattice calculations of the $\pi \pi$ scattering lengths

- CP-PACS (04):
- lattice calculation with $N_{f}=2, O(a)$ improved dynamical quarks
- continuum and chiral extrapolation performed numerically
- smallest pion mass: $M_{\pi}=540 \mathrm{MeV}$
- calculation of phase shifts also performed
- NPLQCD (05):
- lattice calculation over configurations of $N_{f}=3$, staggered dynamical quarks
- valence quarks are domain wall fermions
- no continuum extrapolation (only one lattice spacing) chiral extrapolation performed numerically
- smallest pion mass: $M_{\pi}=294 \mathrm{MeV}$

CP-PACS calculation

a_{0} here stands for a_{0}^{2}

CP-PACS calculation

a_{0} here stands for a_{0}^{2}

CP-PACS calculation

δ here stands for δ_{0}^{2}

NPLQCD calculation

NPLQCD ralculatinn

$C \equiv a_{0}^{2} / a_{0}^{2}(\mathrm{LO})-1$

Lattice calculations of $\bar{\ell}_{3}$ and $\bar{\ell}_{4}$

- MILC
- $N_{f}=3$ staggered fermions [fourth root trick] determination of the L_{i} 's (SU(3) constants)
- continuum and chiral extrapolation done numerically and with the help of CHPT - finite volume corrected
- smallest pion mass: $M_{\pi}=240 \mathrm{MeV}$
- Lüscher et al.
- $N_{f}=2$ Wilson fermions
- continuum and chiral extrapolation done numerically and with the help of CHPT - finite volume corrected
- smallest pion mass: $M_{\pi}=380 \mathrm{MeV}$
- ETM collaboration
- $N_{f}=2$ twisted mass fermions
- no continuum extrapolation, chiral extrapolation done numerically and with the help of CHPT - finite volume corrected
- smallest pion mass: $M_{\pi} \sim 300 \mathrm{MeV}$

Lattice calculations of $\bar{\ell}_{3}$ and $\bar{\ell}_{4}$

- MILC

$$
\bar{\ell}_{3}=0.6 \pm 1.2, \quad \bar{\ell}_{4}=3.9 \pm 0.5
$$

- Lüscher et al.

$$
\bar{\ell}_{3}=3.5 \pm 0.5 \pm 0.1
$$

- ETM collaboration

$$
\bar{\ell}_{3}=3.65 \pm 0.12, \quad \bar{\ell}_{4}=4.52 \pm 0.06
$$

Lüscher et al. calculation

Lüscher et al. calculation

ETM calculation

ETM calculation

Summary: theory vs experiment

Summary: theory vs experiment

cf. J. Gasser's talk

Summary: lattice vs theory vs experiment

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry
- The prediction relies on the assumption that the Gell-Mann-Oakes-Renner term dominates the pion mass

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry
- The prediction relies on the assumption that the Gell-Mann-Oakes-Renner term dominates the pion mass
- Experimental data are approaching the same level of precision and thereby test the underlying assumptions about the structure of the QCD vacuum

Conclusions

- The high precision in the prediction for the scattering lengths is obtained through a combined use of dispersive methods and chiral symmetry
- The prediction relies on the assumption that the Gell-Mann-Oakes-Renner term dominates the pion mass
- Experimental data are approaching the same level of precision and thereby test the underlying assumptions about the structure of the QCD vacuum
- Today even the direct comparison to first principle QCD calculations is possible. I have reviewed recent lattice calculations of the $I=2$ scattering length and of the quark mass dependence of F_{π} and M_{π}

