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Why is ππ scattering interesting

◮ the pions are the quasi-Goldstone bosons of spontaneous
chiral symmetry breaking of QCD

◮ their interaction vanishes in the limit of zero momenta and
quark masses

◮ a precision study of the departure from this limit thoroughly
tests our understanding of strong interactions in the
nonperturbative regime (e.g. through lattice calculations)

◮ multipion final states are ubiquitous in hadronic decays:
understanding the ππ interaction is important for many
other reactions (e.g. K → 2π, 3π, η → 3π, etc.)

◮ at low energy the two S-wave scattering lengths are the
essential parameters: e.g. the parameters of the σ
resonance are determined, in a model-independent way,
by a0

0 and a2
0 Caprini, GC, Leutwyler (06)
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Determination of the σ resonance parameters
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Low-energy theorem for ππ scattering

M(π0π0 → π+π−) ≡ A(s, t , u) = isospin invariant amplitude

Low energy theorem: A(s, t , u) =
s − M2

F 2 +O(p4) Weinberg 1966

M2 = B(mu + md) M2
π = M2 + O(m2

q), Fπ = F + O(mq)

All physical amplitudes can be expressed in terms of A(s, t , u)

T I=0 = 3A(s, t , u) + A(t , s, u) + A(u, t , s) ⇒ T I=0 =
2s − M2

π

F 2
π

S wave projection (I=0)

t0
0 (s) =

2s − M2
π

32πF 2
π

a0
0 = t0

0 (4M2
π) =

7M2
π

32πF 2
π

= 0.16
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Low-energy theorem for ππ scattering

M(π0π0 → π+π−) ≡ A(s, t , u) = isospin invariant amplitude

Low energy theorem: A(s, t , u) =
s − M2

F 2 +O(p4) Weinberg 1966

M2 = B(mu + md) M2
π = M2 + O(m2

q), Fπ = F + O(mq)

All physical amplitudes can be expressed in terms of A(s, t , u)

T I=2 = A(t , s, u) + A(u, t , s) ⇒ T I=2 =
−s + 2M2

π

F 2
π

S wave projection (I=2)

t2
0 (s) =

2M2
π − s

32πF 2
π

a2
0 = t2

0 (4M2
π) =

−M2
π

16πF 2
π

= −0.045
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Chiral predictions for a0
0 and a2

0

Quark mass dependence of Mπ and Fπ:

M2
π = M2

(

1 −
M2

32π2F 2 ℓ̄3 + O(M4)

)

Fπ = F
(

1 +
M2

16π2F 2 ℓ̄4 + O(M4)

)

Phenomenological determinations (indirect):

ℓ̄3 = 2.9 ± 2.4 Gasser & Leutwyler (84)

ℓ̄4 = 4.4 ± 0.2 GC, Gasser & Leutwyler (01)

Lattice calculations determine these constants directly
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Chiral predictions for a0
0 and a2

0
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Sensitivity to the quark condensate
The constant ℓ̄3 determines the NLO quark mass dependence
of the pion mass

M2
π = 2Bm̂

[

1 +
2Bm̂

16πF 2
π

ℓ̄3 + O(m̂2)

]

m̂ =
mu + md

2
B = −

1
F 2 〈0|q̄q|0〉
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Sensitivity to the quark condensate
The constant ℓ̄3 determines the NLO quark mass dependence
of the pion mass

M2
π = 2Bm̂

[

1 +
2Bm̂

16πF 2
π

ℓ̄3 + O(m̂2)

]

m̂ =
mu + md

2
B = −

1
F 2 〈0|q̄q|0〉

Its size tells us what fraction of the pion mass is given by the
Gell-Mann–Oakes–Renner term

M2
GMOR ≡ 2Bm̂

or how large is the quark condensate, the order parameter of
chiral symmetry breaking.
Jan Stern and collaborators have emphasized this since long!
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Sensitivity to the quark condensate
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MGMOR > 94%Mπ

Situation after new data?
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Higher orders

Higher order corrections are suppressed by O(m2
q/Λ2)

Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 + O(p6) a2

0 = −0.0445 + O(p6)

Gasser and Leutwyler (84)
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Higher orders

Higher order corrections are suppressed by O(m2
q/Λ2)

Λ ∼ 1 GeV ⇒ expected to be a few percent

a0
0 = 0.200 + O(p6) a2

0 = −0.0445 + O(p6)

The reason for the rather large correction in a0
0 is a chiral log

a0
0 =

7M2
π

32πF 2
π

[

1 +
9
2
ℓχ + . . .

]

a2
0 = −

M2
π

16πF 2
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1 −
3
2
ℓχ + . . .

]

ℓχ =
M2
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16π2F 2
π

ln
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Higher orders
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Higher orders
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Roy equations

Unitarity effects can be calculated exactly using dispersive
methods

Unitarity, analyticity and crossing symmetry ≡ Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a0

0 and a2
0

Output: the full ππ scattering amplitude below 0.8 GeV
Note: if a0

0, a2
0 are chosen within the universal band

the solution exists and is unique
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Roy equations

Unitarity effects can be calculated exactly using dispersive
methods

Unitarity, analyticity and crossing symmetry ≡ Roy equations

Input: imaginary parts above 0.8 GeV
two subtraction constants, e.g. a0

0 and a2
0

Output: the full ππ scattering amplitude below 0.8 GeV
Note: if a0

0, a2
0 are chosen within the universal band

the solution exists and is unique

Numerical solutions of the Roy equations
Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)
Ananthanarayan, GC, Gasser and Leutwyler (00)
Descotes-Genon, Fuchs, Girlanda and Stern (01)



Introduction Precision Alternative appr. Lattice Summary Roy equations χ-symmetry+disp. methods

Numerical solutions
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Numerical solutions
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0) is not mandatory
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Combining CHPT and dispersive methods

In CHPT the two subtraction constants are predicted

Subtracting the amplitude at threshold (a0
0, a2

0) is not mandatory

The freedom in the choice of the subtraction point
can be exploited to use the chiral expansion
where it converges best, i.e. below threshold
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Combining CHPT and dispersive methods
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

GC, Gasser and Leutwyler (01)
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Combining CHPT and dispersive methods

The convergence of the series at threshold is greatly improved
if CHPT is used only below threshold

CHPT at threshold

a0
0 = 0.159 → 0.200 → 0.216

10 · a2
0 = −0.454 → −0.445 → −0.445

p2 p4 p6

CHPT below threshold + Roy

a0
0 = 0.197 → 0.2195 → 0.220

10 · a2
0 = −0.402 → −0.446 → −0.444

GC, Gasser and Leutwyler (01)
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Final results

a0
0 = 0.220 ± 0.001 + 0.027∆r2 − 0.0017∆ℓ3

10 · a2
0 = −0.444 ± 0.003 − 0.04∆r2 − 0.004∆ℓ3

where

〈r2〉s = 0.61fm2(1 + ∆r2) ℓ̄3 = 2.9 + ∆ℓ3
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where
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Adding errors in quadrature [∆r2 = 6.5%, ∆ℓ3 = 2.4]

a0
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10 · a2
0 = −0.444 ± 0.01

a0
0 − a2

0 = 0.265 ± 0.004
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Final results

a0
0 = 0.220 ± 0.001 + 0.027∆r2 − 0.0017∆ℓ3

10 · a2
0 = −0.444 ± 0.003 − 0.04∆r2 − 0.004∆ℓ3

where

〈r2〉s = 0.61fm2(1 + ∆r2) ℓ̄3 = 2.9 + ∆ℓ3

Adding errors in quadrature [∆r2 = 6.5%, ∆ℓ3 = 2.4]

a0
0 = 0.220 ± 0.005

10 · a2
0 = −0.444 ± 0.01

a0
0 − a2

0 = 0.265 ± 0.004

Pelaez and Yndurain have criticized these results
Claim 1: our input above 1.4 GeV is not correct (PY 03)
The criticism has been answered (Caprini et al. 03)
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Final results

a0
0 = 0.220 ± 0.001 + 0.027∆r2 − 0.0017∆ℓ3

10 · a2
0 = −0.444 ± 0.003 − 0.04∆r2 − 0.004∆ℓ3

where

〈r2〉s = 0.61fm2(1 + ∆r2) ℓ̄3 = 2.9 + ∆ℓ3

Adding errors in quadrature [∆r2 = 6.5%, ∆ℓ3 = 2.4]

a0
0 = 0.220 ± 0.005

10 · a2
0 = −0.444 ± 0.01

a0
0 − a2

0 = 0.265 ± 0.004

Pelaez and Yndurain have criticized these results
Claim 2: our calculation for 〈r2〉s is not correct (Y, 04)
The criticism has been answered (Ananthanarayan et al. 04)
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The analysis of Stern et al.

◮ Stern and collaborators advocate that it is even more
interesting not to attempt any (indirect) determinations of
ℓ̄3 and ℓ̄4

◮ they also use the solutions of the Roy equations in order to
analyze the data, and with them translate low-energy data
into values of the scattering lengths

◮ our two independent numerical solutions of the Roy
equations agree – the outcome of our analyses agree also
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The analysis of Peláez and Ynduráin
Peláez and Ynduráin have proposed a different approach and
analyze the data with a parametrization which

◮ is simple, fits the data and has the correct cut structure at
low s > 0

◮ approximately satisfies forward dispersion relations
◮ does not take into account chiral symmetry constraints

Disregarding technical differences, a few essential remarks:
◮ data at various energies are treated democratically – on

the other hand some sets of data are clearly inconsistent
with each other

◮ no use of crossing symmetry – the left-hand cut is not
properly implemented

◮ the use of dispersion relations is limited – it is not required
that they are satisfied exactly – in a sense, data and theory
are also treated democratically
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Other analyses

◮ Kamiński, Leśniak and Loiseau have also worked out
numerical solution of the Roy equations with the aim of
resolving an ambiguity among possible phase-shift
solutions in the analysis of πN → ππN data
(Cracow-Cern-Munich)

◮ various other parametrizations/analyses of the ππ
scattering amplitude exist in the literature, constructed with
different goals
e.g. D. Bugg (96,05,06), Maiorov and Patarakin (03,05),
Achasov and Kiselev (05), etc.
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Numerical comparison
Phenomenological analyses

DFGS KLL PY
a0

0 0.228 ± 0.032 0.224 ± 0.013 0.230 ± 0.015
−10 · a2

0 0.382 ± 0.038 0.343 ± 0.036 0.480 ± 0.046
(δ0

0 − δ2
0)|s=M2

K
47.1◦ 37◦ − δ2

0(M2
K ) 52.9◦ ± 1.6◦

< 49◦

Analysis based on chiral symmetry

CGL
a0

0 0.220 ± 0.005
−10 · a2

0 0.444 ± 0.010
(δ0

0 − δ2
0)|s=M2

K
47.7◦ ± 1.5◦

DFGS=Descotes-Genon, Fuchs, Girlanda and Stern, KLL=Kamiński, Leśniak and Loiseau,

PY=Peláez and Ynduráin
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Phase shifts
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Phase shifts
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Phase shifts
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Lattice calculations of the ππ scattering lengths

◮ CP-PACS (04):
◮ lattice calculation with Nf = 2, O(a) improved dynamical

quarks
◮ continuum and chiral extrapolation performed numerically
◮ smallest pion mass: Mπ = 540 MeV
◮ calculation of phase shifts also performed

◮ NPLQCD (05):
◮ lattice calculation over configurations of Nf = 3, staggered

dynamical quarks
◮ valence quarks are domain wall fermions
◮ no continuum extrapolation (only one lattice spacing)

chiral extrapolation performed numerically
◮ smallest pion mass: Mπ = 294 MeV
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CP-PACS calculation
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CP-PACS calculation
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CP-PACS calculation

0 0.08 0.16 0.24 0.32
p

2
[GeV

 2
]

−35

−30

−25

−20

−15

−10

−5

0

continuum limit
ACM(A) data
ACM(B) data
Losty et al. data

δ(p)(degrees)

δ here stands for δ2
0



Introduction Precision Alternative appr. Lattice Summary

NPLQCD calculation
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NPLQCD calculation
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Lattice calculations of ℓ̄3 and ℓ̄4

◮ MILC
◮ Nf = 3 staggered fermions [fourth root trick]

determination of the Li ’s (SU(3) constants)
◮ continuum and chiral extrapolation done numerically and

with the help of CHPT – finite volume corrected
◮ smallest pion mass: Mπ = 240 MeV

◮ Lüscher et al.
◮ Nf = 2 Wilson fermions
◮ continuum and chiral extrapolation done numerically and

with the help of CHPT – finite volume corrected
◮ smallest pion mass: Mπ = 380 MeV

◮ ETM collaboration
◮ Nf = 2 twisted mass fermions
◮ no continuum extrapolation, chiral extrapolation done

numerically and with the help of CHPT – finite volume
corrected

◮ smallest pion mass: Mπ ∼ 300 MeV
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Lattice calculations of ℓ̄3 and ℓ̄4

◮ MILC
ℓ̄3 = 0.6 ± 1.2 , ℓ̄4 = 3.9 ± 0.5

◮ Lüscher et al.
ℓ̄3 = 3.5 ± 0.5 ± 0.1

◮ ETM collaboration

ℓ̄3 = 3.65 ± 0.12 , ℓ̄4 = 4.52 ± 0.06
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Lüscher et al. calculation
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Lüscher et al. calculation
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ETM calculation
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ETM calculation
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Summary: theory vs experiment
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Summary: theory vs experiment
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Summary: lattice vs theory vs experiment
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dispersive methods and chiral symmetry
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◮ Experimental data are approaching the same level of
precision and thereby test the underlying assumptions
about the structure of the QCD vacuum

◮ Today even the direct comparison to first principle QCD
calculations is possible. I have reviewed recent lattice
calculations of the I = 2 scattering length and of the quark
mass dependence of Fπ and Mπ


	Introduction
	What do we learn?

	Precision of the chiral prediction
	Roy equations
	Chiral symmetry + dispersive methods

	Alternative approaches
	Relevant lattice calculations
	Summary and conclusions

