Rare K- (vs.) B-decays

Ulrich Haisch University of Zürich

Kaon International Conference 2007, May 21–25, 2007, Frascati, Italy

$$\mathcal{A}_{\rm SM}(s \to d\nu\bar{\nu}) = \sum_{q=u,c,t} V_{qs}^* V_{qd} X_{\rm SM}^q \propto \left(\frac{m_t^2}{M_W^2} (\lambda^5 + i\lambda^5) + \frac{m_c^2}{M_W^2} \ln\frac{m_c}{M_W} \lambda + \frac{\Lambda^2}{M_W^2} \lambda\right)$$

$$Q_{\nu} = (\bar{s}_L \gamma_{\mu} d_L) (\bar{\nu}_L \gamma^{\mu} \bar{\nu}_L)$$

 V–A current is conserved: large logarithms appear only in charm sector

$$\mathcal{A}_{\rm SM}(s \to d\nu\bar{\nu}) = \sum_{q=u,c,t} V_{qs}^* V_{qd} X_{\rm SM}^q \propto \frac{m_t^2}{M_W^2} (\lambda^5 + i\lambda^5) + \frac{m_c^2}{M_W^2} \ln \frac{m_c}{M_W} \lambda + \frac{\Lambda^2}{M_W^2} \lambda$$

 $\propto \text{const.}$

 SU(2)_L breaking in Z-penguin amplitude leads to power-like GIM mechanism

$$\mathcal{A}_{\rm SM}(s \to d\nu\bar{\nu}) = \sum_{q=u,c,t} V_{qs}^* V_{qd} X_{\rm SM}^q \propto \frac{m_t^2}{M_W^2} (\lambda^5 + i\lambda^5) + \frac{m_c^2}{M_W^2} \ln \frac{m_c}{M_W} \lambda + \frac{\Lambda^2}{M_W^2} \lambda$$

 $\propto \text{const.}$

large CP violating phase
 in dominant short-distance
 contribution due to top

$$\mathcal{A}_{\rm SM}(s \to d\nu\bar{\nu}) = \sum_{q=u,c,t} V_{qs}^* V_{qd} X_{\rm SM}^q \propto \frac{m_t^2}{M_W^2} (\lambda^5 + i\lambda^5) + \frac{m_c^2}{M_W^2} \ln \frac{m_c}{M_W} \lambda + \frac{\Lambda^2}{M_W^2} \lambda$$

 $\propto \text{const.}$

thus: s→dvv exceptional tool
 to discover non-MFV physics
 where hard GIM is not active

$$\mathcal{A}_{\rm SM}(b \to s\gamma) = \sum_{q=u,c,t} V_{qb}^* V_{qs} \, K_{\rm SM}^q \propto \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^4$$

$$Q_7 = \frac{e}{16\pi^2} m_b (\bar{s}_L \sigma_{\mu\nu} b_R) F^{\mu\nu}$$

tensor current not conserved:
 b→sγ depends logarithmically
 on scale where Q₇ is generated

charm

up

top

$$\mathcal{A}_{\rm SM}(b \to s\gamma) = \sum_{q=u,c,t} V_{qb}^* V_{qs} K_{\rm SM}^q \propto \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^4$$

• gluonic corrections lead to mild logarithmic GIM suppression of $b \rightarrow s\gamma$ amplitude

charm

up

top

$$\mathcal{A}_{\rm SM}(b \to s\gamma) = \sum_{q=u,c,t} V_{qb}^* V_{qs} \, K_{\rm SM}^q \propto \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^4$$

charm

up

top

$$\mathcal{A}_{\rm SM}(b \to s\gamma) = \sum_{q=u,c,t} V_{qb}^* V_{qs} \, K_{\rm SM}^q \propto \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^2 + \ln \frac{m_b}{M_W} \lambda^4$$

laboratory, providing stringent constraints on new physics

Next $23^{(+)}$ minutes ...

- recent progress in SM
- next theoretical obstacles
- joining forces: K- & B-decays
- no conclusions

$K \rightarrow \pi v \overline{v}$ matrix elements from K_{I3} in ChPT

$$\kappa_{L} = \frac{G_{F}^{2} m_{K}^{5} \alpha^{2}(M_{Z})}{256 \pi^{5} s_{W}^{4}} \lambda^{8} (\tau_{L} | \lambda \times f_{+}^{K^{0} \pi^{+}}(0) |^{2})_{\exp} \left(\frac{r_{TK}}{r_{0+}} \right)^{2} \mathcal{I}_{\nu}^{0},$$

$$\kappa_{+} = \frac{G_{F}^{2} m_{K}^{5} \alpha^{2}(M_{Z})}{256 \pi^{5} s_{W}^{4}} \lambda^{8} \tau_{+} (\mathbf{r}_{K} | \lambda \times f_{+}^{K^{0} \pi^{+}}(0) |^{2})_{\exp} \mathcal{I}_{\nu}^{+}$$

$$r_{K} = \frac{f_{+}^{K^{+} \pi^{+}}(0)}{f_{+}^{K^{0} \pi^{+}}(0)} = 1.0015 \pm 0.0007^{\dagger} \qquad r_{0+} = \frac{f_{+}^{K^{+} \pi^{0}(+)}(q^{2})}{f_{+}^{K^{0} \pi^{+}(0)}(q^{2})} = 1.0238 \pm 0.0035^{\dagger}$$

$$r = \frac{f_{+}^{K^{+} \pi^{0}}(q^{2}) f_{+}^{K^{0} \pi^{0}}(q^{2})}{f_{+}^{K^{0} \pi^{+}}(q^{2})} = 1.0000 \pm 0.0002^{\dagger} \qquad \epsilon^{(2)} \propto \frac{m_{u} - m_{d}}{m_{s}}$$

• classic ChPT analysis of $O(p^2 e^{(2)})^*$ isospin-breaking effects very recently extended to $O(p^4 e^{(2)})^*$ & partially $O(p^6 e^{(2)})^+$

KL & K+: main messages*

• overall uncertainties on

 $K_L \rightarrow \pi^0 v \overline{v} \& K^+ \rightarrow \pi^+ v \overline{v}$

matrix elements are

reduced by factor 4 & 7

further reduction of
 errors possible with
 better data on K₁₃ slopes
 & K⁺₁₃ branching ratios

	(r ₀₊) _{theo}	(r ₀₊) ^{KLOE}	(r ₀₊) _{exp}	τ+	f(0) _{K₁₃}	Ι	r ĸ	r	future (?)
KL	2.229 ± 0.017	2.229 ± 0.036	2.190 ± 0.018	_	77%	12%	9 %	2%	± 0.013
К+	5.168 ± 0.025	5.168 ± 0.025	5.168 ± 0.025	19%	43%	21%	17%	_	± 0.023

*Mescia & Smith '07

SM prediction of $K_L \rightarrow \pi^0 \sqrt{\nu}$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \left[\frac{\mathrm{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right]^2 = (2.54 \pm 0.35) \times 10^{-11}$$

$$\kappa_{L} = (2.229 \pm 0.017) \times 10^{-10} \left(\frac{\lambda}{0.225}\right)^{8} \star$$

$$X = 1.456 \pm 0.017_{m_{t}} \pm 0.013_{\mu_{t}} \stackrel{?}{\pm} 0.015_{\text{EW}}^{\ddagger}$$

$$M_{t} \stackrel{W}{\longrightarrow} \stackrel{W}{$$

*Mescia & Smith '07 [†]Misiak & Urban '99, Buchalla & Buras '99 [‡]Buchalla & Buras '97

SM prediction of $K_L \rightarrow \pi^0 \sqrt{\nu}$: upshot

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \left[\frac{\mathrm{Im}(V_{ts}^* V_{td})}{\lambda^5} X \right]^2 = (2.54 \pm 0.35) \times 10^{-11}$$

$$\kappa_L = (2.229 \pm 0.017) \times 10^{-10} \left(\frac{\lambda}{0.225}\right)^8 *$$

$$X = 1.456 \pm 0.017_{m_t} \pm 0.013_{\mu_t} \stackrel{?}{\pm} 0.015_{\rm EW}^{\ddagger}$$

- unkown NNLO & EW corrections dominate theory error of 3%
- within SM amount of CP violation could be determined with unmatched precision

*Mescia & Smith '07 [†]Misiak & Urban '99, Buchalla & Buras '99 [‡]Buchalla & Buras '97

SM prediction of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$: $\kappa_+ \& \Delta_{EM}$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) = \kappa_+ (1 + \Delta_{\rm EM}) \left| \frac{x}{\lambda^5} \right|^2$$

$$x = V_{ts}^* V_{td} X + \lambda^4 \operatorname{Re}(V_{cs}^* V_{cd})(P_c + \delta P_{c,u})$$

$$\kappa_{+} = (5.168 \pm 0.025) \times 10^{-10} \left(\frac{\lambda}{0.225}\right)^{8} *$$

 $\Delta_{\rm EM}(E_{\gamma} < 20 \,\mathrm{MeV}) = -0.003$

 long-distance QED corrections at O(p²α) in ChPT are known now

*Mescia & Smith '07

SM prediction of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$: P_c

$$\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu}(\gamma)) = \kappa_{+}(1 + \Delta_{\rm EM}) \left| \frac{x}{\lambda^{5}} \right|^{2} \qquad \stackrel{0.5}{}_{0.45} - 10 - \text{NLO} - \text{NNLO}$$

$$x = V_{ts}^{*} V_{td} X + \lambda^{4} \operatorname{Re}(V_{cs}^{*} V_{cd}) \left(P_{c} + \delta P_{c,u} \right) \qquad \stackrel{0.5}{}_{0.35} \qquad \stackrel{0.4}{}_{0.35} \qquad \stackrel{0.4}{}_{0.35} \qquad \stackrel{0.3}{}_{1} \qquad \stackrel{0.3}{}_{1} \qquad \stackrel{0.3}{}_{1} \qquad \stackrel{0.3}{}_{1} \qquad \stackrel{1.5}{}_{\mu_{c}} \left[\operatorname{GeV} \right]$$

 NNLO calculation of P_c leads to reduction of theoretical error from 10% down to 2.5%

*Buras et al. '05, '06

SM prediction of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$: $\delta P_{c,\nu}$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) = \kappa_+ (1 + \Delta_{\rm EM}) \left| \frac{x}{\lambda^5} \right|^2$$
$$x = V_{ts}^* V_{td} X + \lambda^4 \operatorname{Re}(V_{cs}^* V_{cd}) \left(P_c + \delta P_{c,u} \right)$$

$$Q_{1}^{(8)} = (\bar{s}_{L}\gamma_{\mu}d_{L})\partial^{2}(\bar{\nu}_{L}\gamma^{\mu}\nu_{L}),$$
$$Q_{2}^{(8)} = (\bar{s}_{L}\overleftarrow{D}_{\nu}\gamma_{\mu}\overrightarrow{D}^{\nu}d_{L})(\bar{\nu}_{L}\gamma^{\mu}\nu_{L}),$$
$$Q_{3}^{(8)} = (\bar{s}_{L}\overleftarrow{D}_{\nu}\gamma_{\mu}d_{L})(\bar{\nu}_{L}(\overleftarrow{\partial}^{\nu}-\overrightarrow{\partial}^{\nu})\gamma^{\mu}\nu_{L})$$

- local charm effects due to dimension-eight operators naively of O(m²_K/m²_c)≈15%
- genuine long-distance up effects of O(^{^2}/m²_c)≈10%

*Falk et al. '00

SM prediction of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$: $\delta P_{c,\nu}$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) = \kappa_+ (1 + \Delta_{\rm EM}) \left| \frac{x}{\lambda^5} \right|^2$$

$$x = V_{ts}^* V_{td} X + \lambda^4 \operatorname{Re}(V_{cs}^* V_{cd}) \left(\frac{P_c}{P_c} + \delta P_{c,u} \right)$$

$$O(G_F^2 p^2) \qquad O(G_F^2 p^4)$$

$$\delta P_{c,u} = 0.04 \pm 0.02$$

- effects scale as O(π²F²_π/m²_c)≈5% &
 enhance SM branching ratio by 6%
- theoretical uncertainty related to non-perturbative effects due to charm & up may be reduced further by dedicated lattice analysis[†]

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) = \{7.96 \pm 0.86, 7.90 \pm 0.67, 7.46 \pm 0.91\} \times 10^{-11}$$

*Kühn et al. '07 ⁺Hoang & Manohar '05

SM prediction of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$: upshot

- theoretical progress in K⁺→π⁺ν⊽
 closely related to precision
 determination of charm mass
- better knowledge of longdistance effects desirable
- K⁺→π⁺ν⊽ new field of interesting physical applications for lattice community

Constraints on new physics from $\overline{B} \rightarrow X_s \gamma$

model	accuracy	effect	bound		
THDM II	NLO	↑	M [±] _H > 295 GeV (95% CL)*		
general MSSM	LO	\bigcirc	$ (\delta_{23}^d)_{LL} \leq 4 \times 10^{-1}, (\delta_{23}^d)_{RR} \leq 8 \times 10^{-1}, (\delta_{23}^d)_{LR} \leq 6 \times 10^{-2}, (\delta_{23}^d)_{RL} \leq 2 \times 10^{-2}$		
mUED	LO	\downarrow	1/R > 600 GeV (95% CL) [†]		
RS LO		\uparrow	М _{КК} ≳ 2.4 ТеV		

* Misiak et al. '06 [†]UH & Weiler '07

Constraints on new physics from $\overline{B} \rightarrow X_s \gamma$

 Initial
 $M_{H}^{\pm} > 295 \text{ GeV} (95\% \text{ CL})^{*}$

 general MSSM
 $|(\delta_{23}^{d})_{LL}| \leq 4 \times 10^{-1}, |(\delta_{23}^{d})_{RR}| \leq 8 \times 10^{-1}, |(\delta_{23}^{d})_{RR}| \leq 2 \times 10^{-2}$

 mUED
 $1/R > 600 \text{ GeV} (95\% \text{ CL})^{\dagger}$

 RS
 $M_{KK} \geq 2.4 \text{ TeV}$

*Misiak et al. '06 ⁺UH & Weiler '07

 constraints depend in non-negligible way on theory error in SM

Corrections to $\overline{B} \rightarrow X_s \gamma$ beyond LO in SM

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{\rm SM}^{E_{\gamma} > 1.6 \text{ GeV}} = \mathcal{B}(\bar{B} \to X_c e \bar{\nu}) \left[\frac{\Gamma(b \to s \gamma)}{\Gamma(b \to c e \bar{\nu})} \right]_{\rm LO} f\left(\frac{\alpha_s(M_w)}{\alpha_s(m_b)} \right)$$

$$\times \left\{ 1 + \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha) + \mathcal{O}(\alpha_s^2) + \mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_c^2}\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_b^2}\right) \right\}$$

Usual suspects in $\overline{B} \rightarrow X_s \gamma$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD} \times \text{QED}} + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^8 C_i(\mu) Q_i + \dots$$

$$Q_{1,2} = (\bar{s}\Gamma_i c)(\bar{c}\Gamma'_i b) \qquad |C_{1,2}(m_b)| \approx 1$$

$$Q_{3-6} = (\bar{s}\Gamma_i b) \sum_q (\bar{q}\Gamma'_i q) \qquad |C_{3-6}(m_b)| < 0.07$$

$$Q_7 = \frac{em_b}{16\pi^2} (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu} \qquad C_7(m_b) \approx -0.3$$

$$Q_8 = \frac{gm_b}{16\pi^2} (\bar{s}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu} \qquad C_8(m_b) \approx -0.15$$

Usual suspects in $\overline{B} \rightarrow X_s \gamma$

Error budget of $\overline{B} \rightarrow X_s \gamma$ at NLO in SM

$$\mathcal{B}_{\rm exp}^{E_{\gamma}>1.6~{\rm GeV}} = \left(3.55 \pm 0.24 \,{}^{+0.09}_{-0.10} \pm 0.03\right) \times 10^{-4}$$

$$\mathcal{B}_{\rm NLO}^{E_{\gamma}>1.6~{\rm GeV}} = (3.33 \pm 0.29) \times 10^{-4}, \ m_c/m_b = 0.26$$

*

Error budget of $\overline{B} \rightarrow X_s \gamma$ at NLO in SM

$$\mathcal{B}_{\rm exp}^{E_{\gamma}>1.6~{\rm GeV}} = \left(3.55 \pm 0.24 \,{}^{+0.09}_{-0.10} \pm 0.03\right) \times 10^{-4}$$

$$\mathcal{B}_{\rm NLO}^{E_{\gamma}>1.6~{\rm GeV}} = (3.33 \pm 0.29) \times 10^{-4}, \ m_c/m_b = 0.26$$

*

*HFAG '06

Error budget of $\overline{B} \rightarrow X_s \gamma$ at NLO in SM

$$\mathcal{B}_{\exp}^{E_{\gamma} > 1.6 \text{ GeV}} = \left(3.55 \pm 0.24 \,{}^{+0.09}_{-0.10} \pm 0.03\right) \times 10^{-4}$$

$$\mathcal{B}_{\rm NLO}^{E_{\gamma}>1.6 \ {\rm GeV}} = (3.33 \pm 0.29) \times 10^{-4}, \ m_c/m_b = 0.26$$

scheme ambiguity associated
 with charm mass, first appearing
 at NLO, can only be resolved
 by dedicated NNLO calculation

*

*HFAG '06

Flavor of NNLO $\overline{B} \rightarrow X_s \gamma$ SM calculation

- matching
- running
- matrix elements
- very involved task as > 10²
 3-loop on-shell & > 10⁴ 4-loop
 tadpole diagrams need to be
 computed

Flavor of NNLO $\overline{B} \rightarrow X_s \gamma$ SM calculation

matching*
 running[†]
 matrix elements[‡]

*Bobeth et al. '00; Misiak & Steinhauser '04 ⁺Gorbahn & UH '04; Gorbahn et al. '05; Czakon et al. '06

[∓]Bieri et al. '03; Blokland et al. '05;
 Melnikov & Mitov '05; Asatrian et al. '05, '06;
 Misiak & Steinhauser '06

Interpolation in charm mass for $\overline{B} \rightarrow X_s \gamma$

- (Q₂, Q₇) interference at NNLO known for arbitrary r=m_c/m_b in large β₀ limit, while beyond-β₀ part only calculated for r>>1/2
- assume that β₀ piece describes full result accurately for m_c = 0
 & perform interpolation in r

*Bieri et al. '03 ⁺Misiak & Steinhauser '06

Non-local power corrections in $\overline{B} \rightarrow X_s \gamma$

- matrix elements of non-local operators promote corrections that scale like $\alpha_s \Lambda^3/m_b^3$ & $\alpha_s \Lambda^2/m_c^2$ in heavy quark to $\alpha_s \Lambda/m_b$
- part involving Q7 & Q8 calculated in vacuum insertion approximation:

$$\frac{\Delta\Gamma_{\rm VIA}^{78}}{\Gamma_{77}} = -\frac{2\pi\alpha_s}{9} \sum_{q=u,d} Q_q \frac{C_8}{C_7} \frac{f_B^2 m_B}{\lambda_B^2 m_b} \approx (-1.6 \pm 1.4)\%$$

 size of power corrections difficult to estimate given present command of nonperturbative QCD on light cone

*Lee et al. '06

First NNLO estimate of $\overline{B} \rightarrow X_s \gamma$ in SM*

*Misiak et al. '06

Photon energy cut effects in $\overline{B} \rightarrow X_s \gamma$

- total rate cannot be measured
- at present experimental cut of $E_0 > 1.8 \,\text{GeV}$ on photon energy E_{γ}
- how big is rate in tail?

 $\frac{F(1.6\,\text{GeV})}{F(1.0\,\text{GeV})} \stackrel{\bigstar}{=} 0.98^{+0.02}_{-0.03}$

⁺Misiak et al. '06 [‡]Becher & Neubert '06 *Gardi & Andersen '06

Photon energy cut effects in $\overline{B} \rightarrow X_s \gamma$

- total rate cannot be measured
- at present experimental cut of $E_0 > 1.8 \text{ GeV}$ on photon energy E_γ
- how big is rate in tail?

$$\frac{F(1.6 \text{ GeV})}{F(1.0 \text{ GeV})} \stackrel{\bigstar}{=} 0.98^{+0.02}_{-0.03} \qquad \frac{F(1.6 \text{ GeV})}{F(1.0 \text{ GeV})} \stackrel{\bigstar}{=} 0.96$$

$$\frac{F(1.6 \text{ GeV})}{F(1.0 \text{ GeV})} \stackrel{\bigstar}{=} 0.93^{+0.03}_{-0.05} \stackrel{+0.02}{}_{\text{pert}} \stackrel{+0.02}{-0.02} \stackrel{+0.02}{}_{\text{hadr}} \stackrel{+0.02}{-0.02} \stackrel{+0.02}{}_{\text{para}}$$

 to understand better if & how to precisely calculate tail of spectrum crucial

*Gardi & Andersen '06 [†]Misiak et al. '06 [‡]Becher & Neubert '06

$\overline{B} \rightarrow X_s l^+ l^-$ in SM: solved problems*

 differential rate in low-q² region allows high precision test of SM & constraints new physics:

 $\mathcal{B}_{ll,SM}^{\text{low-}q^2} = (1.60 \pm 0.16) \times 10^{-6}$

• zero of FB asymmetry very interesting to determine sign & magnitude of $C_7/C_9 \propto -q_0^2$:

 $q_{0,\rm SM}^2 = (3.76 \pm 0.33) \ {\rm GeV}^2$

*Ghinculov et al. '03; Bobeth et al. '03; Huber et al. '05

$\overline{B} \rightarrow X_s l^+ l^-$ in SM: open issues

- model-independent study of M_Xcut dependence of low-q²
 spectrum only known at NLO*
- consistent to cut out ψ, ψ', ... & compare data with short-distance calculation?
- like in $\overline{B} \to X_s \gamma$ difficult to quantify size of effects of non-local power corrections $\alpha_s \Lambda/m_b$

*Lee et al. '06

CMFV: combining $\overline{B} \rightarrow X_s \gamma \& \overline{B} \rightarrow X_s l^+l^-$

measurements*

*Gambino et al. '04

CMFV: combining $\overline{B} \rightarrow X_s \gamma, l^+ l^- \& K^+ \rightarrow \pi^+ \sqrt{\nu}$

large destructive
 Z-penguin allowed by
 flavor constraints*

*Bobeth et al. '05

CMFV: combining $\overline{B} \rightarrow X_s \gamma, l^+ l^- \& K^+ \rightarrow \pi^+ \sqrt{\nu}$

• 2015 (?): measurement of $K^+ \rightarrow \pi^+ \vee \overline{\nu}$ close to

SM excludes $\Delta C \approx -2^*$

*Bobeth et al. '05

CMFV: combining $\overline{B} \rightarrow X_s \gamma, l^+ l^- \& Z \rightarrow b \overline{b}$

*UH & Weiler '07 (?)

CMFV: combining $\overline{B} \rightarrow X_s \gamma, l^+ l^- \& Z \rightarrow b \overline{b}$

*UH & Weiler '07 (?)

After this "upset" of rare K-decays ...

Cecilia & Chris will tell you now why ...

concerning physics beyond MFV ...

these modes are superpowers ...

... of flavor landscape

Recent determinations of charm mass

Parametric errors in $\overline{B} \rightarrow X_s \gamma$ at NNLO*

$$n_c(m_c) = (1.224 \pm 0.017 \pm 0.054) \,\mathrm{GeV}$$

 parametric uncertainty related to charm mass already slightly smaller than estimated left over scheme ambiguity

* Misiak & Steinhauser '06 [†]Hoang & Manohar '05

Future (?) CKM fit from $K \rightarrow \pi v \overline{v}^*$

(theory error only)

comparable to present global analysis, but not ultimate goal

$$B(K_L \rightarrow \pi \ \nu\nu) = (3.0 \pm 0.3) \times 10$$

Future (

$$\frac{\sigma(|V_{td}|)}{|V_{td}|} = \pm 4.0\%$$

$$\sigma(\sin 2\beta) = \pm 0.024$$

$$\sigma(\gamma) = \pm 4.7^{\circ}$$

NLO
(theory error only)

$$\frac{\sigma(|V_{td}|)}{|V_{td}|} = \pm 1.0\%$$
$$\sigma(\sin 2\beta) = \pm 0.006$$
$$\sigma(\gamma) = \pm 1.2^{\circ}$$

*Buras et al. '05, '06

 $\mathcal{D}(\mathbf{T} \mathbf{Z})$

$\overline{B} \rightarrow X_s l^+ l^-$: learning effectively from 1ab⁻¹ data*

• angular decomposition:

$$\frac{d^{2}\Gamma}{dsdz} \sim \left\{ (1+z^{2}) \left[\left(C_{9} + \frac{2}{s}C_{7} \right)^{2} + C_{10}^{2} \right] + (1-z^{2}) \left[(C_{9} + 2C_{7})^{2} + C_{10}^{2} \right] -4zsC_{10} \left(C_{9} + \frac{2}{s}C_{7} \right) \right\}$$

$$\equiv H_{T} + H_{L} + H_{A}$$

$$\sim \Gamma \qquad \sim A_{FB}$$

$$(s = q^{2}/m_{b}^{2}, z = \cos\theta, \theta : \triangleleft b, l^{+})$$

*Lee et al. '06

$\overline{B} \rightarrow X_s l^+ l^-$: learning effectively from $1 a b^{-1} data^*$

$$\begin{aligned} \frac{d^2\Gamma}{dsdz} &\sim \left\{ (1+z^2) \left[\left(C_9 + \frac{2}{s} C_7 \right)^2 + C_{10}^2 \right] \right. \\ &+ (1-z^2) \left[(C_9 + 2C_7)^2 + C_{10}^2 \right] \right. \\ &- 4zsC_{10} \left(C_9 + \frac{2}{s} C_7 \right) \right\} \\ &= \underbrace{H_T}_T + \underbrace{H_L}_T + \underbrace{H_A}_{FB} \\ &\sim \Gamma \qquad \sim A_{FB} \end{aligned}$$

$$(s = q^2/m_b^2, z = \cos\theta, \theta : \triangleleft b, l^+)$$

• angular decomposition:

$$H_{T,L,A}(q_1^2, q_2^2) \equiv \int_{q_1^2}^{q_2^2} dq^2 H_{T,L,A}(q^2)$$

*Lee et al. '06

Bounds on $\Delta C \& \Delta C_7^{eff}$ from $\overline{B} \to X_s \gamma, I^+I^- \& Z \to b\overline{b}$

$$\Delta C = [-0.486, 0.366] (95\% \text{ CL})$$

$$\Delta C_7^{\text{eff}} = \begin{bmatrix} -0.104, 0.026 \end{bmatrix} \cup \\ \begin{bmatrix} 0.891, 0.968 \end{bmatrix} \quad (95\% \text{ CL})$$

 large corrections to off-shell photon penguin still allow for "wrong" sign of ΔC^{eff}₇

*UH & Weiler '07 (?)

Hunting Z-penguin with $\overline{B} \rightarrow K^* I^+ I^-$

- forward-backward asymmetry in
 B→K*l⁺l⁻ excludes C₉C₁₀ > 0 at
 95% CL*
- hints towards exclusion of large destructive Z-penguin:
 |ΔC| ≤ 1.5

*Belle '05; BaBar '06