Rare K - (vs.) B-decays

Ulrich Haisch University of Zürich

Kaon International Conference 2007, May 21-25, 2007, Frascati, Italy

Warm-up: basic facts about $s \rightarrow d v \bar{v}$

$$
\mathcal{A}_{\mathrm{SM}}(s \rightarrow d \nu \bar{\nu})=\sum_{q=u, c, t} V_{q s}^{*} V_{q d} X_{\mathrm{SM}}^{q} \propto \frac{m_{t}^{2}}{M_{W}^{2}}\left(\lambda^{5}+i \lambda^{5}\right)+\frac{m_{c}^{2}}{M_{W}^{2}} \ln \frac{m_{c}}{M_{W}} \lambda+\frac{\Lambda^{2}}{M_{W}^{2}} \lambda
$$

$$
Q_{\nu}=\left(\bar{s}_{L} \gamma_{\mu} d_{L}\right)\left(\bar{\nu}_{L} \gamma^{\mu} \bar{\nu}_{L}\right)
$$

- V-A current is conserved: large logarithms appear only in charm sector
top charm up

Warm-up: basic facts about $s \rightarrow d v \bar{v}$

$$
\mathcal{A}_{\mathrm{SM}}(s \rightarrow d \nu \bar{\nu})=\sum_{q=u, c, t} V_{q s}^{*} V_{q d} X_{\mathrm{SM}}^{q} \propto \frac{m_{t}^{2}}{M_{W}^{2}}\left(\lambda^{5}+i \lambda^{5}\right)+\frac{m_{c}^{2}}{M_{W}^{2}} \ln \frac{m_{c}}{M_{W}} \lambda+\frac{\Lambda^{2}}{M_{W}^{2}} \lambda
$$

 amplitude leads to power-like GIM mechanism

Warm-up: basic facts about $s \rightarrow d v \bar{v}$

$$
\mathcal{A}_{\mathrm{SM}}(s \rightarrow d \nu \bar{\nu})=\sum_{q=u, c, t} V_{q s}^{*} V_{q d} X_{\mathrm{SM}}^{q} \propto \frac{m_{t}^{2}}{M_{W}^{2}}\left(\lambda^{5}+i \lambda^{5}\right)+\frac{m_{c}^{2}}{M_{W}^{2}} \ln \frac{m_{c}}{M_{W}} \lambda+\frac{\Lambda^{2}}{M_{W}^{2}} \lambda
$$

- large CP violating phase in dominant short-distance contribution due to top

Warm-up: basic facts about $s \rightarrow d v \bar{v}$

$$
\mathcal{A}_{\mathrm{SM}}(s \rightarrow d \nu \bar{\nu})=\sum_{q=u, c, t} V_{q s}^{*} V_{q d} X_{\mathrm{SM}}^{q} \propto \frac{m_{t}^{2}}{M_{W}^{2}}\left(\lambda^{5}+i \lambda^{5}\right)+\frac{m_{c}^{2}}{M_{W}^{2}} \ln \frac{m_{c}}{M_{W}} \lambda+\frac{\Lambda^{2}}{M_{W}^{2}} \lambda
$$

 to discover non-MFV physics where hard GIM is not active

Warm-up: basic facts about $b \rightarrow s \gamma$

$$
\mathcal{A}_{\mathrm{SM}}(b \rightarrow s \gamma)=\sum_{q=u, c, t} V_{b b}^{*} V_{q s} K_{\mathrm{SM}}^{q} \propto \ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{4}
$$

$$
Q_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s}_{L} \sigma_{\mu \nu} b_{R}\right) F^{\mu \nu}
$$

- tensor current not conserved: $b \rightarrow s \gamma$ depends logarithmically on scale where Q_{7} is generated
top charm up

Warm-up: basic facts about $b \rightarrow s \gamma$

$$
\mathcal{A}_{\mathrm{SM}}(b \rightarrow s \gamma)=\sum_{q=u, c, t} V_{q b}^{*} V_{q s} K_{\mathrm{SM}}^{q} \propto \ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{4}
$$

- gluonic corrections lead to mild logarithmic GIM suppression of $b \rightarrow s \gamma$ amplitude

Warm-up: basic facts about $b \rightarrow s \gamma$

$$
\mathcal{A}_{\mathrm{SM}}(b \rightarrow s \gamma)=\sum_{q=u, c, t} V_{q b}^{*} V_{q s} K_{\mathrm{SM}}^{q} \propto \ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{4}
$$

- sensitivity on high scale physics "swamped" by renormalization group effects

Warm-up: basic facts about $b \rightarrow s \gamma$

$$
\mathcal{A}_{\mathrm{SM}}(b \rightarrow s \gamma)=\sum_{q=u, c, t} V_{q b}^{*} V_{q s} K_{\mathrm{SM}}^{q} \propto \ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{2}+\ln \frac{m_{b}}{M_{W}} \lambda^{4}
$$

- thus: $b \rightarrow s \gamma$ wonderful QCD laboratory, providing stringent constraints on new physics

Next $23^{(+)}$minutes ...

- recent progress in SM
- next theoretical obstacles
- joining forces: K- \& B-decays
- no conclusions

$K \rightarrow \pi V \bar{v}$ matrix elements from K_{13} in ChPT

$$
\begin{aligned}
\kappa_{L} & =\frac{G_{F}^{2} m_{K}^{5} \alpha^{2}\left(M_{Z}\right)}{256 \pi^{5} s_{W}^{4}} \lambda^{8}\left(\tau_{L}\left|\lambda \times f_{+}^{K^{0} \pi^{+}}(0)\right|^{2}\right)_{\exp }\left(\frac{r r_{K}}{r_{0+}}\right)^{2} \mathcal{I}_{\nu}^{0}, \\
\kappa_{+} & =\frac{G_{F}^{2} m_{K}^{5} \alpha^{2}\left(M_{Z}\right)}{256 \pi^{5} s_{W}^{4}} \lambda^{8} \tau_{+}\left(r_{K}\left|\lambda \times f_{+}^{K^{0} \pi^{+}}(0)\right|^{2}\right)_{\exp } \mathcal{I}_{\nu}^{+}
\end{aligned}
$$

$$
r_{K}=\frac{f_{+}^{K^{+} \pi^{+}}(0)}{f_{+}^{K^{0} \pi^{+}}(0)}=1.0015 \pm 0.0007 r_{0+}=\frac{f_{+}^{K^{+} \pi^{0(+)}}\left(q^{2}\right)}{f_{+}^{K^{0} \pi^{+(0)}}\left(q^{2}\right)}=1.0238 \pm 0.0035{ }^{\dagger}
$$

$$
r=\frac{f_{+}^{K^{+} \pi^{0}}\left(q^{2}\right) f_{+}^{K^{0} \pi^{0}}\left(q^{2}\right)}{f_{+}^{K^{0} \pi^{+}}\left(q^{2}\right) f_{+}^{K^{+} \pi^{+}}\left(q^{2}\right)}=1.0000 \pm 0.0002 \quad \epsilon^{(2)} \propto \frac{m_{u}-m_{d}}{m_{s}}
$$

- classic ChPT analysis of $O\left(p^{2} \epsilon^{(2)}\right)^{*}$ isospin-breaking effects very recently extended to $O\left(p^{4} \epsilon^{(2)}\right)$ \& partially $O\left(p^{6} \epsilon^{(2)}\right)^{\dagger}$
*Marciano \& Parsa'96 †'Mescia \& Smith '07

$K_{L} \& K_{+}$: main messages*

- overall uncertainties on $K L \rightarrow \pi^{0} v \bar{v} \& K^{+} \rightarrow \pi^{+} v \bar{v}$ matrix elements are reduced by factor 4 \& 7
- further reduction of errors possible with better data on K_{13} slopes \& $K_{l 3}^{+}$branching ratios

$\left(\mathrm{rO}_{+}\right)_{\text {theo }}$ $\left(\mathrm{r}_{\mathrm{O}}\right)_{\mathrm{exp}}^{\mathrm{KLOE}}$ $\left(\mathrm{rO}_{+}\right)_{\exp }$ τ_{+} $f(0)_{K_{13}}$ I r_{K} r future (?) K_{L} 2.229 ± 0.017 2.229 ± 0.036 2.190 ± 0.018 - 77% 12% 9% 2% K_{+} 5.168 ± 0.025 5.168 ± 0.025 5.168 ± 0.025 19% 43% 21% 17% -

*Mescia \& Smith '07

SM prediction of $K_{L} \rightarrow \pi^{0} v \bar{V}$

$$
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L}\left[\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right]^{2}=(2.54 \pm 0.35) \times 10^{-11}
$$

$$
\kappa_{L}=(2.229 \pm 0.017) \times 10^{-10}\left(\frac{\lambda}{0.225}\right)^{8 *}
$$

$$
X=1.456 \pm 0.017_{m_{t}} \pm 0.013_{\mu_{t}} \stackrel{?}{ \pm} 0.015_{\mathrm{EW}}^{\ddagger}
$$

CKM 69\%

SM prediction of $K_{L} \rightarrow \pi^{0} v \bar{v}$: upshot

$$
\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=\kappa_{L}\left[\frac{\operatorname{Im}\left(V_{t s}^{*} V_{t d}\right)}{\lambda^{5}} X\right]^{2}=(2.54 \pm 0.35) \times 10^{-11}
$$

$$
\kappa_{L}=(2.229 \pm 0.017) \times 10^{-10}\left(\frac{\lambda}{0.225}\right)^{8 *}
$$

$$
X=1.456 \pm 0.017_{m_{t}} \pm 0.013_{\mu_{t}} \stackrel{?}{ \pm} 0.015_{\mathrm{EW}}^{\ddagger}
$$

- unkown NNLO \& EW corrections dominate theory error of 3\%
- within SM amount of CP violation could be determined with unmatched precision

SM prediction of $K^{+} \rightarrow \pi^{+} V \bar{V}: K+\& \Delta_{E M}$

$$
\begin{aligned}
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\gamma)\right)=\kappa_{+}\left(1+\Delta_{\mathrm{EM}}\right)\left|\frac{x}{\lambda^{5}}\right|^{2} \quad \Delta_{\mathrm{EM}}\left(E_{\gamma}<20 \mathrm{MeV}\right)=-0.003^{\prime 2} \\
& x=V_{t s}^{*} V_{t d} X+\lambda^{4} \operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)\left(P_{c}+\delta P_{c, u}\right) \\
& \kappa_{+}=(5.168 \pm 0.025) \times 10^{-10}\left(\frac{\lambda}{0.225}\right)^{8 *}
\end{aligned}
$$

- long-distance QED corrections at $O\left(p^{2} \alpha\right)$ in ChPT are known now
*Mescia \& Smith '07

SM prediction of $K^{+} \rightarrow \pi^{+} v \bar{v}$: P_{c}

$$
\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\gamma)\right)=\kappa_{+}\left(1+\Delta_{\mathrm{EM}}\right)\left|\frac{x}{\lambda^{5}}\right|^{2}
$$

$$
x=V_{t s}^{*} V_{t d} X+\lambda^{4} \operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)\left(P_{c}+\delta P_{c, u}\right)
$$

$$
P_{c}=0.374 \pm 0.009_{\mathrm{pert}} \pm 0.031_{m_{c}} \pm 0.009_{\alpha_{s}}
$$

- NNLO calculation of P_{c} leads to reduction of theoretical error from 10% down to 2.5%
*Buras et al. '05, '06

SM prediction of $K^{+} \rightarrow \pi^{+} v \bar{v}: \delta P_{c, u}$

$$
\begin{aligned}
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\gamma)\right)=\kappa_{+}\left(1+\Delta_{\mathrm{EM}}\right)\left|\frac{x}{\lambda^{5}}\right|^{2} \\
& x=V_{t s}^{*} V_{t d} X+\lambda^{4} \operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)\left(P_{c}+\delta P_{c, u}\right)
\end{aligned}
$$

$$
Q_{1}^{(8)}=\left(\bar{s}_{L} \gamma_{\mu} d_{L}\right) \partial^{2}\left(\bar{\nu}_{L} \gamma^{\mu} \nu_{L}\right)
$$

$$
Q_{2}^{(8)}=\left(\bar{s}_{L} \overleftarrow{D}_{\nu} \gamma_{\mu} \overrightarrow{D^{\nu}} d_{L}\right)\left(\bar{\nu}_{L} \gamma^{\mu} \nu_{L}\right)
$$

$$
Q_{3}^{(8)}=\left(\bar{s}_{L}{\overleftarrow{D_{\nu}}}_{\nu} d_{L}\right)\left(\bar{\nu}_{L}\left(\overleftarrow{\partial^{\nu}}-\overrightarrow{\partial^{\nu}}\right) \gamma^{\mu} \nu_{L}\right)
$$

- local charm effects due to dimension-eight operators naively of $O\left(\mathrm{~m}_{\mathrm{K}}^{2} / \mathrm{m}_{\mathrm{c}}^{2}\right) \approx 15 \%$
- genuine long-distance up effects of $O\left(\Lambda^{2} / m_{c}^{2}\right) \approx 10 \%$

SM prediction of $K^{+} \rightarrow \pi^{+} v \overline{\mathrm{~V}}: \delta P_{\mathrm{c}, \mathrm{u}}$

$$
\begin{aligned}
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\gamma)\right)=\kappa_{+}\left(1+\Delta_{\mathrm{EM}}\right)\left|\frac{x}{\lambda^{5}}\right|^{2} \\
& x=V_{t s}^{*} V_{t d} X+\lambda^{4} \operatorname{Re}\left(V_{c s}^{*} V_{c d}\right)\left(P_{c}+\delta P_{c, u}\right)
\end{aligned}
$$

$O\left(G_{F}^{2} p^{2}\right)$

$O\left(G_{F}^{2} p^{4}\right)$

$$
\delta P_{c, u}=0.04 \pm 0.02
$$

- effects scale as $O\left(\pi^{2} F_{\pi}^{2} / m_{c}^{2}\right) \approx 5 \%$ \& enhance SM branching ratio by 6\%
- theoretical uncertainty related to non-perturbative effects due to charm \& up may be reduced further by dedicated lattice analysis ${ }^{\dagger}$

SM prediction(s) of $K^{+} \rightarrow \pi^{+} v \bar{v}$

$$
\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\gamma)\right)=\{7.96 \pm 0.86,7.90 \pm 0.67,7.46 \pm 0.91\} \times 10^{-11}
$$

$$
m_{c}\left(m_{c}\right)=(1.30 \pm 0.05) \mathrm{GeV}
$$

$$
m_{c}\left(m_{c}\right)=(1.286 \pm 0.013) \mathrm{GeV}
$$

*Kühn et al. '07 †Hoang \& Manohar '05

SM prediction of $K^{+} \rightarrow \pi^{+} v \overline{\mathrm{~V}}$: upshot

- theoretical progress in $K^{+} \rightarrow \pi^{+} \vee \bar{\nabla}$ closely related to precision determination of charm mass
- better knowledge of longdistance effects desirable
- $\mathrm{K}^{+} \rightarrow \pi^{+} \vee \bar{v}$ new field of interesting physical applications for lattice community

Constraints on new physics from $\bar{B} \rightarrow X_{s} Y$

THDM II

mUED

model	accuracy	effect	bound
THDM II	NLO	\uparrow	$M_{H}^{ \pm}>295 \mathrm{GeV}(95 \% \mathrm{CL}) *$
general MSSM	LO	\Downarrow	$\begin{aligned} & \left\|\left(\delta_{23}^{d}\right)_{\mathrm{LI}}\right\| \leqq 4 \times 10^{-1},\left\|\left(\delta_{23}^{d}\right)_{\mathrm{RR}}\right\| \leqq 8 \times 10^{-1}, \\ & \left\|\left(\delta_{23}^{d}\right)_{\mathrm{LR}}\right\| \leq 6 \times 10^{-2},\left\|\left(\delta_{23}^{d}\right)_{\mathrm{RL}}\right\| \leq 2 \times 10^{-2} \end{aligned}$
mUED	LO	\Downarrow	$1 / \mathrm{R}>600 \mathrm{GeV}(95 \% \mathrm{CL})^{\dagger}$
RS	LO	\uparrow	$M_{K K} \gtrsim 2.4$ TeV

*Misiak et al. '06 †UH \& Weiler '07

Constraints on new physics from $\bar{B} \rightarrow X_{s} Y$

THDM II

mUED

model	bound	
THDM II	$M_{H}^{ \pm}>295 \mathrm{GeV}(95 \% \mathrm{CL})^{*}$	
general MSSM	$\\|\left(\delta_{23}^{d}\right)_{\mathrm{LI}}\left\|\lesssim 4 \times 10^{-1},\left\|\left(\delta_{23}^{d}\right)_{\mathrm{RR}}\right\| \lesssim 8 \times 10^{-1}\right.$,	
$\\|\left(\delta_{23}^{d}\right)_{\mathrm{LR}}\left\|\lesssim 6 \times 10^{-2},\left\|\left(\delta_{23}^{d}\right)_{\mathrm{RL}}\right\| \lesssim 2 \times 10^{-2}\right.$		
mUED	$1 / R>600 \mathrm{GeV}(95 \% \mathrm{CL})^{\dagger}$	
RS	$M_{K K} \geq 2.4 \mathrm{TeV}$	

*Misiak et al. '06 †UH \& Weiler '07

- constraints depend in non-negligible way on theory error in SM

Corrections to $\bar{B} \rightarrow X_{s} \gamma$ beyond LO in SM

$$
\begin{aligned}
& \mathcal{B}\left(\bar{B} \rightarrow X_{s} \gamma\right)_{\mathrm{SM}}^{E_{\gamma}>1.6 \mathrm{GeV}}=\mathcal{B}\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)\left[\frac{\Gamma(b \rightarrow s \gamma)}{\Gamma(b \rightarrow c e \bar{\nu})}\right]_{\mathrm{LO}} f\left(\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}\left(m_{b}\right)}\right) \\
& \quad \times\left\{1+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}(\alpha)+\mathcal{O}\left(\alpha_{s}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{b}^{2}}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{m_{c}^{2}}\right)+\mathcal{O}\left(\alpha_{s} \frac{\Lambda}{m_{b}}\right)\right\}
\end{aligned}
$$

perturbative

LO QCD + NLO mb

- LO QCD + NLO mc
- NLO QCD + LO mb
non-perturbative

Usual suspects in $\bar{B} \rightarrow X_{S} Y$

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i}+\ldots
$$

$$
Q_{1,2}=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right)
$$

$$
\left|C_{1,2}\left(m_{b}\right)\right| \approx 1
$$

$Q_{3-6}=\left(\bar{s} \Gamma_{i} b\right) \sum_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right)$
$\left|C_{3-6}\left(m_{b}\right)\right|<0.07$

$$
\begin{aligned}
Q_{7} & =\frac{e m_{b}}{16 \pi^{2}}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \\
Q_{8} & =\frac{g m_{b}}{16 \pi^{2}}\left(\bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}
\end{aligned}
$$

$$
C_{7}\left(m_{b}\right) \approx-0.3
$$

$$
C_{8}\left(m_{b}\right) \approx-0.15
$$

Usual suspects in $\bar{B} \rightarrow X_{s} Y$

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{QCD} \times \mathrm{QED}}+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i}+\ldots
$$

$$
Q_{1,2}=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right)
$$

$$
\left|C_{1,2}\left(m_{b}\right)\right| \approx 1
$$

$Q_{3-6}=\left(\bar{s} \Gamma_{i} b\right) \sum_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right)$
$\left|C_{3-6}\left(m_{b}\right)\right|<0.07$

$$
\begin{aligned}
Q_{7} & =\frac{e m_{b}}{16 \pi^{2}}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \\
Q_{8} & =\frac{g m_{b}}{16 \pi^{2}}\left(\bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}
\end{aligned}
$$

$$
\begin{aligned}
& C_{7}\left(m_{b}\right) \approx-0.3 \\
& C_{8}\left(m_{b}\right) \approx-0.15
\end{aligned}
$$

Error budget of $\bar{B} \rightarrow X_{s} Y$ at NLO in SM

$$
\mathcal{B}_{\exp }^{E_{\gamma}>1.6 \mathrm{GeV}}=\left(3.55 \pm 0.24_{-0.10}^{+0.09} \pm 0.03\right) \times 10^{-4} \quad *
$$

$$
\mathcal{B}_{\mathrm{NLO}}^{E_{\gamma}>1.6 \mathrm{GeV}}=(3.33 \pm 0.29) \times 10^{-4}, m_{c} / m_{b}=0.26
$$

$m_{c} / m_{b}=0.22 \pm 0.04(\overline{M S})$
$m_{c} / m_{b}=0.29 \pm 0.04$ (pole)

Error budget of $\bar{B} \rightarrow X_{s} Y$ at NLO in SM

$$
\mathcal{B}_{\exp }^{E_{\gamma}>1.6 \mathrm{GeV}}=\left(3.55 \pm 0.24_{-0.10}^{+0.09} \pm 0.03\right) \times 10^{-4} \quad *
$$

$$
\mathcal{B}_{\mathrm{NLO}}^{E_{\gamma}>1.6 \mathrm{GeV}}=(3.33 \pm 0.29) \times 10^{-4}, m_{c} / m_{b}=0.26
$$

Error budget of $\bar{B} \rightarrow X_{s} Y$ at NLO in SM

$$
\mathcal{B}_{\exp }^{E_{\gamma}>1.6 \mathrm{GeV}}=\left(3.55 \pm 0.24_{-0.10}^{+0.09} \pm 0.03\right) \times 10^{-4} \quad *
$$

$$
\mathcal{B}_{\mathrm{NLO}}^{E_{\gamma}>1.6 \mathrm{GeV}}=(3.33 \pm 0.29) \times 10^{-4}, m_{c} / m_{b}=0.26
$$

- scheme ambiguity associated with charm mass, first appearing at NLO, can only be resolved by dedicated NNLO calculation

Flavor of NNLO $\bar{B} \rightarrow X_{s} Y$ SM calculation

matching
running
matrix elements

- very involved task as $>10^{2}$ 3-loop on-shell \& > 10^{4} 4-loop tadpole diagrams need to be computed

Flavor of NNLO $\bar{B} \rightarrow X_{s} Y$ SM calculation

*Bobeth et al. '00; Misiak \& Steinhauser '04
${ }^{\dagger}$ Gorbahn \& UH '04; Gorbahn et al. '05;
Czakon et al. '06
$\ddagger_{\text {Bieri et al. ' } 03 ; ~ B l o k l a n d ~ e t ~ a l . ~ ' 05 ; ~}$
Melnikov \& Mitov '05; Asatrian et al. '05, '06; Misiak \& Steinhauser '06

Interpolation in charm mass for $\bar{B} \rightarrow X_{s} Y$

- $\left(Q_{2}, Q_{7}\right)$ interference at NNLO known for arbitrary $r=m_{c} / m_{b}$ in large β_{0} limit, while beyond- β_{0} part only calculated for $r \gg 1 / 2$
- assume that β_{0} piece describes full result accurately for $m_{c}=0$ \& perform interpolation in r
- large- β_{0}
$-\propto C_{i}^{(0)} C_{i}^{(2)}, C_{i}^{(1)} C_{i}^{(1)}$
- beyond- β_{0}
$-\propto C_{i}^{(0)} C_{i}^{(0)}$
*Bieri et al. '03 †'Misiak \& Steinhauser '06

Non-local power corrections in $\bar{B} \rightarrow X_{s} Y$

- matrix elements of non-local operators promote corrections that scale like $\alpha_{s} \Lambda^{3} / \mathrm{m}_{b}^{3}$ \& $\alpha_{s} \Lambda^{2} / m_{c}^{2}$ in heavy quark to $\alpha_{s} \Lambda / m_{b}$
- part involving $Q_{7} \& Q_{8}$ calculated in vacuum insertion approximation:

$$
\frac{\Delta \Gamma_{\mathrm{VIA}}^{78}}{\Gamma_{77}}=-\frac{2 \pi \alpha_{s}}{9} \sum_{q=u, d} Q_{q} \frac{C_{8}}{C_{7}} \frac{f_{B}^{2} m_{B}}{\lambda_{B}^{2} m_{b}} \approx(-1.6 \pm 1.4) \%^{*}
$$

- size of power corrections difficult to estimate given present command of non-
 perturbative QCD on light cone

First NNLO estimate of $\bar{B} \rightarrow X_{s} \gamma$ in $S M^{*}$

$$
\mathcal{B}_{\mathrm{NNLO}}^{E_{\gamma}>1.6 \mathrm{GeV}}=(3.15 \pm 0.23) \times 10^{-4}
$$

*Misiak et al. '06

Photon energy cut effects in $\bar{B} \rightarrow X_{s} Y$

- total rate cannot be measured
- at present experimental cut of $E_{0}>1.8 \mathrm{GeV}$ on photon energy E_{γ}
- how big is rate in tail?

$$
\begin{aligned}
& \frac{F(1.6 \mathrm{GeV})}{F(1.0 \mathrm{GeV})} \stackrel{\text { DGE }}{\text { * }} 0.98_{-0.03}^{+0.02} \\
& \frac{F(1.6 \mathrm{GeV})}{F(1.0 \mathrm{GeV})}{\underset{\text { OPE }}{\dagger}}_{\dagger}^{0.96}
\end{aligned}
$$

*Gardi \& Andersen '06
${ }^{\dagger}$ Misiak et al. '06
\ddagger Becher \& Neubert '06

Photon energy cut effects in $\bar{B} \rightarrow X_{s} Y$

- total rate cannot be measured
- at present experimental cut of $E_{0}>1.8 \mathrm{GeV}$ on photon energy E_{Y}
- how big is rate in tail?

$$
\frac{F(1.6 \mathrm{GeV})}{F(1.0 \mathrm{GeV})} \stackrel{\star}{=} 0.98_{-0.03}^{+0.02}
$$

$$
\frac{F(1.6 \mathrm{GeV})}{F(1.0 \mathrm{GeV})} \stackrel{\dagger}{=} 0.96
$$

- to understand better if \& how to precisely calculate

$$
\frac{F(1.6 \mathrm{GeV})}{F(1.0 \mathrm{GeV})} \stackrel{\ddagger}{\ddagger} 0.93_{-0.05 \mathrm{pert}}^{+0.03} \stackrel{+0.02}{+0.02} \stackrel{+0.02}{+0.0 \mathrm{hadr}^{-0.02}} \mathrm{para}
$$ tail of spectrum crucial

$\bar{B} \rightarrow X_{s} I^{+} I^{-}$in SM: solved problems*

- differential rate in low- ${ }^{2}$ region allows high precision test of SM \& constraints new physics:

$$
\mathcal{B}_{l l, \mathrm{SM}}^{\mathrm{low}-q^{2}}=(1.60 \pm 0.16) \times 10^{-6}
$$

- zero of FB asymmetry very interesting to determine sign \& magnitude of $C_{7} / C_{9} \propto-q_{0}^{2}$:

$$
q_{0, \mathrm{SM}}^{2}=(3.76 \pm 0.33) \mathrm{GeV}^{2}
$$

$\bar{B} \rightarrow X_{s} I^{+}+$in SM: open issues

- model-independent study of M_{x} cut dependence of low-q ${ }^{2}$ spectrum only known at NLO*
- consistent to cut out $\Psi, \Psi^{\prime}, \ldots$ \& compare data with short-distance calculation?
- like in $\bar{B} \rightarrow X_{s} \gamma$ difficult to quantify size of effects of non-local power corrections $\alpha_{s} \Lambda / m_{b}$

CMFV: combining $\bar{B} \rightarrow X_{s} Y \& \bar{B} \rightarrow X_{s} \|^{-}$

- opposite sign of $\mathrm{C}_{7}^{\text {eff }}$ disfavored by $\bar{B} \rightarrow X_{s} I^{+} I^{-}$ measurements*
*Gambino et al. '04

CMFV: combining $\bar{B} \rightarrow X_{s}, I^{+} I^{-} \& K^{+} \rightarrow \pi^{+} v \bar{V}$

- large destructive

Z-penguin allowed by flavor constraints*
*Bobeth et al. '05

CMFV: combining $\bar{B} \rightarrow X_{s}, I^{+} I^{-} \& K^{+} \rightarrow \pi^{+} v \bar{V}$

- 2015 (?): measurement of $K^{+} \rightarrow \pi^{+} V \bar{v}$ close to

SM excludes $\Delta C \approx-2$ *
*Bobeth et al. '05

CMFV: combining $\bar{B} \rightarrow X_{s} \gamma, I^{+} l^{-} \& Z \rightarrow b \bar{b}$

- existing $Z \rightarrow b \bar{b}$ data rule out large CMFV
Z-penguin*

CMFV: combining $\bar{B} \rightarrow X_{s}, I^{+\mid-} \& Z \rightarrow b \bar{b}$

- based on observation that in CMFV $Z \rightarrow b \bar{b}$, $\mathrm{d}_{\mathrm{i}} \bar{d}_{j}$ are "identical" *

After this "upset" of rare K-decays ...

Cecilia \& Chris will tell you now why ...

concerning physics beyond MFV ...

these modes are superpowers ...

Recent determinations of charm mass

$m_{c}\left(m_{c}\right)[\mathrm{GeV}]$	method
1.286 ± 0.013	low-momentum sum rules, $\mathrm{N}^{3} \mathrm{LO}$
1.24 ± 0.07	fit to B-decay distribution, $\alpha_{s}^{2} \beta_{0}$
$1.224 \pm 0.017 \pm$ 0.054	fit to B-decay data, $\alpha_{s}^{2} \beta_{0}$
1.29 ± 0.07	NNLO moments
1.319 ± 0.028	lattice, quenched
1.301 ± 0.034	lattice, quenched
$1.26 \pm 0.04 \pm 0.12$	lattice, quenched
1.304 ± 0.027	low-momentum sum rules, NNLO
1.25 ± 0.09	PDG 2006

Parametric errors in $\bar{B} \rightarrow X_{s} \gamma$ at NNLO*

$$
m_{c}\left(m_{c}\right)=(1.224 \pm 0.017 \pm 0.054) \mathrm{GeV}^{\dagger}
$$

- parametric uncertainty related to charm mass already slightly smaller than estimated left over scheme ambiguity
*Misiak \& Steinhauser '06 †Hoang \& Manohar '05

Future (?) CKM fit from $K \rightarrow \pi V^{*}$ *

$$
\begin{aligned}
& \mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=(8.0 \pm 0.8) \times 10^{-11} \\
& \mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)=(3.0 \pm 0.3) \times 10^{-11}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sigma\left(\left|V_{t d}\right|\right)}{\left|V_{t d}\right|}= \pm 4.0 \% \\
& \sigma(\sin 2 \beta)= \pm 0.024 \\
& \sigma(\gamma)= \pm 4.7^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sigma\left(\left|V_{t d}\right|\right)}{\left|V_{t d}\right|}= \pm 1.0 \% \\
& \sigma(\sin 2 \beta)= \pm 0.006 \\
& \sigma(\gamma)= \pm 1.2^{\circ}
\end{aligned}
$$

[^0]

- nice CKM fit from $K \rightarrow \pi v \bar{v}$, almost comparable to present global analysis, but not ultimate goal

$\left.\overline{\mathrm{B}} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{I}^{+}\right|^{-}$: learning effectively from $1 \mathrm{ab}^{-1}$ data*

- angular decomposition:

$$
\begin{aligned}
& \frac{d^{2} \Gamma}{d s d z} \sim\left\{\left(1+z^{2}\right)\left[\left(C_{9}+\frac{2}{s} C_{7}\right)^{2}+C_{10}^{2}\right]\right. \\
&+\left(1-z^{2}\right)\left[\left(C_{9}+2 C_{7}\right)^{2}+C_{10}^{2}\right] \\
&\left.-4 z s C_{10}\left(C_{9}+\frac{2}{s} C_{7}\right)\right\} \\
& \equiv \underbrace{H_{T}+H_{L}}+\underbrace{H_{A}} \\
& \sim \Gamma \quad \sim A_{\mathrm{FB}}
\end{aligned}
$$

$$
\left(s=q^{2} / m_{b}^{2}, z=\cos \theta, \theta: \varangle b, l^{+}\right)
$$

$$
H_{T, L, A}\left(q_{1}^{2}, q_{2}^{2}\right) \equiv \int_{q_{1}^{2}}^{q_{2}^{2}} d q^{2} H_{T, L, A}\left(q^{2}\right)
$$

$\overline{\mathrm{B}} \rightarrow \mathrm{X}_{\mathrm{s}} I^{+} I^{-}$: learning effectively from $1 \mathrm{ab}^{-1}$ data*

- angular decomposition:

$$
\begin{aligned}
\frac{d^{2} \Gamma}{d s d z} & \sim\left\{\left(1+z^{2}\right)\left[\left(C_{9}+\frac{2}{s} C_{7}\right)^{2}+C_{10}^{2}\right]\right. \\
& +\left(1-z^{2}\right)\left[\left(C_{9}+2 C_{7}\right)^{2}+C_{10}^{2}\right] \\
& \left.-4 z s C_{10}\left(C_{9}+\frac{2}{s} C_{7}\right)\right\} \\
& \equiv \underbrace{H_{T}+H_{L}}_{\sim \Gamma}+\underbrace{H_{A}} \\
& \sim A_{\mathrm{FB}}
\end{aligned}
$$

$$
\left(s=q^{2} / m_{b}^{2}, z=\cos \theta, \theta: \varangle b, l^{+}\right)
$$

$$
H_{T, L, A}\left(q_{1}^{2}, q_{2}^{2}\right) \equiv \int_{q_{1}^{2}}^{q_{2}^{2}} d q^{2} H_{T, L, A}\left(q^{2}\right)
$$

Bounds on ΔC \& $\Delta C_{7}^{\text {eff }}$ from $\bar{B} \rightarrow X_{s}, I^{+|-|} \& Z \rightarrow b \bar{b}$

$$
\Delta C=[-0.486,0.366] \quad(95 \% \mathrm{CL})
$$

$$
\begin{aligned}
\Delta C_{7}^{\mathrm{eff}}= & {[-0.104,0.026] \cup } \\
& {[0.891,0.968](95 \% \mathrm{CL}) }
\end{aligned}
$$

- large corrections to off-shell photon penguin still allow for "wrong" sign of $\Delta C_{7}^{\text {eff }}$

Hunting Z-penguin with $\bar{B} \rightarrow \mathrm{~K}^{*} \mathrm{l}^{+}{ }^{-}$

- forward-backward asymmetry in $\overline{\mathrm{B}} \rightarrow \mathrm{K}^{*} \mathrm{I}^{+} \mathrm{I}^{-}$excludes $\mathrm{C}_{9} \mathrm{C}_{10}>0$ at 95\% CL*
- hints towards exclusion of large destructive Z-penguin:
$|\Delta C| \leqq 1.5$
*Belle '05; BaBar '06

[^0]: *Buras et al. '05, '06

