KLOE measurement of form factor slopes for $K_L \rightarrow \pi l \nu$ decays

Form factors: motivations I

$$P \xrightarrow{K} \sqrt{\pi p} \langle \pi(p) | j_{\mu} | K(P) \rangle = C_{K} [(P+p)_{\mu} f_{+}(t) + (P-p)_{\mu} f_{-}(t)]$$

$$W \underbrace{q=P-p}_{\substack{e \ k}} t = (P-p)^{2} = M_{K}^{2} + m_{\pi}^{2} - 2M_{K}E_{\pi}$$

$$t$$

$$f_0(t) = f_+(t) + \frac{t}{m_K^2 - m_\pi^2} f_-(t)$$

 f_0 and f_+ related to the transition amplitudes 0^+ and 1^- , respectively

Pole expansion:
$$f_{+,0}(t) = f_{+}(0) \frac{1}{1 - t / m_{V,S}^2}$$

Power expansion:
$$f_{+,0}(t) = f_{+}(0) \times (1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2 + \dots)$$

KAON'07-Frascati 21/5/2007

Form factors: motivations II

<u>1</u> <u>d</u> <u>Γ</u> dt $\delta V_{us}/V_{us} \propto 0.5 \delta I / I$ $\lambda'_{+} = \lambda''_{+} = 0$ $\lambda'_{+}=0.029 \quad \lambda''_{+}=0$ 0.4 $I_{k0e}(\lambda'_{+}) - I_{k0e}(\lambda'_{+}, \lambda''_{+}) / I_{k0e} = 0.4\%$ $\lambda'_{+}=0.025 \quad \lambda''_{+}=0.002$ 0.3 0.2 $\mathbf{I}_{k0\mu}(\lambda'_{+},\lambda''_{+}) - \mathbf{I}_{k0\mu}(\lambda'_{+},\lambda''_{+},\lambda_{0}) / \mathbf{I}_{k0\mu} = 3\%$ K0e3 0.1 2 3 5 1 4 λ'_{+} and λ''_{+} 95% correlated λ'_0 and $\lambda''_0 \sim 100\%$ correlated $\lambda'_{+} = \lambda''_{+} = \lambda_{0} = 0$ $\lambda'_{+}=0.025 \quad \lambda''_{+}=0.002$ $\frac{1}{\Gamma} \frac{d\Gamma}{dt}$ $\lambda_0 = 0$ % error on $V_{us} \times f(0)^*$ 0.3 $\lambda'_{+}=0.025 \ \lambda''_{+}=0.002$ 0.25 $\lambda_0 = 0.016$ Mode %err BR Λ τ 0.2 KLe3 0.25 0.09 0.19 0.10 0.09 0.15 **K0µ3** 0.10 0.18 0.15 0.17 0.1 KLµ3 0.31 0.05 t m² * CKM'06 2 5 3 1 4

C.Gatti

 $\phi \rightarrow K_S K_L$

 $\phi \rightarrow K_S K_L$ almost at rest (p(ϕ) ~13 MeV) We tag a K_L looking for $K_S \rightarrow \pi^+\pi^-$ decays K_L momentum computed from 2 body kinematics (~1% resolution) We measure form factor parameters by measuring kinematical variables in kaon center of mass system

Tag efficiency independent of pion energy (linear in t) within few permil

Measurement of the parameters of the form factors with L=330 pb⁻¹ collected during 2001 and 2002 corresponding to ~2 million Ke3 and K μ 3 selected

Ke3 Selection: DC

400

300

200

100

0

ππ

50

4 m dia., 3.5 m long 12,000 cells He + 10% iso- C_4H_{10} B=5.2 kG $\sigma(p_T)/p_T = 0.4$ %

After kinematical cuts: bkg ~ 10 % (K μ 3) and ϵ ~ 96% We must distinguish π from e to compute E_{π}

πev

100

πππ

200

150

KAON'07-Frascati 21/5/2007

Ke3 Selection:TOF

Pb scintillating-fibers L~4 m ~5000 pm tubes $\sigma(E)/E=5.7\%/\sqrt{E(GeV)}$ $\sigma(t)=57$ ps/ $\sqrt{E(GeV)}$ $\oplus 100$ ps

Tracks are associated to clusters in EmC (TCA) We reject the background and perform Particle ID using TOF ϵ ~40% bkg ~ 1% (Kµ3)

Ke3 Selection:TOF

TCA efficiency different for the two charge modes (different behavior of low-p π^+ and π^- in EmC). If not corrected \Rightarrow different results for λ'_+ (15%) for each charge.

EmC time-response in MC simulation tuned with data control samples

Ke3 Selection: Purity

Radiative corrections

Inner bremsstrahlung affects mainly the low t region (3-5% effect)

Final state radiation included in the simulation of kaon decays

Fit

C.Gatti

 $\lambda'_{+}, \lambda''_{+}$: Results

$$\lambda'_{+}, \lambda''_{+}$$
: Results

KAON'07-Frascati 21/5/2007

Kµ3 Selection

Kinematic preselection cutting on E_{miss} - p_{miss} Rejection of $\pi\pi$, $\pi\pi\pi$, and πev : similar cuts used for the Ke3 selection 4% contamination (Ke3) We don't distinguish π from μ

Kµ3 Selection

Ke3 background reduced by a combined cut on NN output and on TOF variable Final background ~2%

 π - μ separation by TOF difficult due to the small Δ m and at low energy (100 MeV) calorimetry doesn't help much \Rightarrow we fit the Ev spectrum (no need to distinguish π from μ)

K μ 3: t vs E $_{\nu}$

λ_0 : Fit result

KAON'07-Frascati 21/5/2007

Comparison of experimental results (Ke3 and K μ 3)

Conclusion

With ~0.3 fb⁻¹ KLOE has measured the form factor parameters with K0e3 and K0µ3 decays, with relative errors of 7%, 58%, and 17% for $\lambda'_{+} \lambda''_{+}$ and λ_{0} respectively.

Experimental situation for λ_0 comparing different experiments is not very clear. The overall fit has very low χ^2 probability, the systematics must be kept under control.

The first row of the CKM matrix offers the most precise test of unitarity.

The ratio $r_{\mu e}$, test of lepton universality, with kaons is now reaching the precision obtained with $\pi l2$ decays (0.5% vs 0.3%).

KLOE still has to analyze 2 fb⁻¹ of data.

For instance, the relative error on λ_0 can be reduced to 5-10%.

Measurements on charged kaons form factors are underway.