Testing the μ -e universality with K[±]→l[±]v decays aiming at a comprehensive discussion Venelin Kozhuharov on the latest xperimental University of Sofia "St. Kl. Ohridski" oretical achievements, including Kaon 2007 ision tests of the SM, ~perturbative QCD, LNF, Frascati, May 21-25 and CPT tests. development on behalf of the NA48/2 collaboration Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

- Physics motivation
- Experimental setup
- Data analysis
- 2004 data preliminary result
- Conclusions

Within the Standard Model:

 μ_{e}^{+}

M. Finkemeier: Phys.Lett.B387:391-394,1996

where δR_{M} arises from the radiative corrections, M= π^{\pm} ,K[±]

For K[±]: δR_{μ} = -(3.78±0.04)%, leading to

$$R_{\kappa}$$
= (2.472 ± 0.001) * 10⁵

Experimental error on R_K: *two orders of magnitude larger than the theoretical*

- The value of R_{κ} could be different in case of SUSY and LFV models the correction could be as high as 3% in both directions
- Measurement of \textbf{R}_{κ} tests the $\mu\text{-}e$ universality and provides a sensible test of the SM

<u>Magnetic spectrometer (DCH)</u>
 4 drift chambers
 p_⊥^{kick} = 121 MeV/c

∆p/p = 1% ⊕ 0.044*p [GeV/c]

- <u>Hodoscope</u>
 σ(t) = 150 ps
- Liquid Krypton Calorimeter
 △E/E ≅ 3.2%/√E ⊕ 9%/E ⊕ 0.42%
- <u>Hadron Calorimeter</u>, <u>Muon</u> <u>counters</u>, <u>Anticounters</u>, <u>Kaon</u> <u>Beam Spectrometer</u>

Beam direction

Experiment primarily designed for the measurement of the charge asymmetry in $K^{\pm} \rightarrow \pi^{-} \pi^{+} \pi^{\pm}$ and $K^{\pm} \rightarrow \pi^{0} \pi^{0} \pi^{\pm}$ decays **2003 run: ~ 50 days nominal conditions** ~ 12 hour special run **2004 run: ~ 60 days nominal conditions** ~ 56 hour special run ~ 200 TB of data recorded The huge statistics (~4.10° K[±] $\rightarrow \pi^+\pi^-\pi^\pm$) allows to study rare kaon decays with high precision

- 2004 data: special run conditions devoted to the study of Kaon semileptonic decays and Ke2
 - 60 GeV kaon beam with decreased intensity
 - No Level 2 trigger
- Trigger
 - Kµ2 events: 1 charged track
 - Ke2 events: 1 charged track + Energy in the LKR > 10 GeV

v

Geometry and kinematics:

The similarity between the decays allows to exploit systematic cancelation

- One charged track in the acceptance of DCH (kinematics), HOD (trigger) and LKR (PID)
- Track momentum 15 GeV<P<50 GeV
- Vertex reconstructed within 2000 cm < Zvtx < 7000cm

Particle identification:

- E energy deposition in LKR
- P momentum from the spectrometer
 - Muons: E/p<0.2
 - Electrons: E/p>0.95

ifu

background at the order of 0.6% from K2π 24.05.2007 KAON07

Background estimation

- The dominant background is $K\mu 2$
 - Measured from the data in momentum bins
- Ke3 contribution obtained from MC

Preliminary

Total Ke2 events: $(3407 \pm 63_{stat} \pm 54_{syst})$

- Radiative corrections applied according to the prescription of M. Finkemeier: (Phys.Lett.B387:391-394,1996) using the matrix elements from J. Bijnens et al (Nucl.Phys. B396 (1993) 81-118)

- The efficiency of the cuts and the background contribution is obtained in momentum bins from the DATA
- MC used for acceptance calculation
 - Full Geant3 based simulation of the detector response
 - Geometry of the beam tuned with $K^{\pm} \rightarrow \pi^{\pm}\pi^{-}$ decays run by run

Source	Preliminary	Relative error
Ke2 sample statistics	· · · · · · · · · · · · · · · · · · ·	1.85%
Kmu2 sample statistics		0.05%
E/p correction for the electrons (E/p>0.95 cut)		0.18%
E/p correction for the electrons (flatness with Ptrk)		0.16%
E/p correction for the muons (E/p<0.2 cut)		Negligible
Trigger efficiency		0.3%
MC statistics Ke2		0.3%
Acceptance systematics		0.07%
Radiative corrections		0.12%
Muons with E/p>0.95 flatness		0.2%
Background subtraction		1.59%
Total statistical error		<u>1.85%</u>
Total systematics error		<u>1.66%</u>

<u>NB:</u> The dominant contribution to the systematics, the background subtraction error, scales with the statistics

Preliminary

$R_{K} = \Gamma(ke2) / \Gamma(K\mu2) = (2.455 \pm 0.045_{stat} \pm 0.041_{syst}) * 10^{-5}$		
Standard Model	(2.472 ± 0.001) * 10 ⁻⁵	
PDG	(2.45 ± 0.11) * 10 ⁻⁵	
NA48: 2004 data	$(2.455 \pm 0.045 \pm 0.041) * 10^{5}$	

The NA48 measurement based on the 2004 data is **two times** more precise than the world average

- K[±]→l[±]v decays provide a very challenging opportunity to search for physics beyond the Standard Model
- A sub-percent precision measurement of R_K will allow to probe for New Physics or rule out regions in the parameters space in different models
- A run dedicated to the $R_{\rm k}$ measurement will take place this year in the frame of P326 experiment

<u>2003 data</u>

13.75 15.14

93E-02

78.39

1.349

1100

0.000

0.000

8159.

/ 31 1597.±

1577.±

 $1.005 \pm$

103.4 ±

76.614

1.1

578 0.9604

- Kµ2 events: signal from the charged hodosope
 - Ke₂ events Entries Mean BMS 0.5513E-01 700 - L2 trigger: UDFLW OVFLW ALICHAN online kinematics reconstruction 600 31.03 $M_{Fake}^{2} = M_{K}^{2} + M_{\pi}^{2} S$ 500 $S=(p_{\kappa}-p_{\tau})^{2}, p_{\kappa}=(0,0,60) \text{ GeV/c}$ 400 L2 efficiency using Ke3 events 300 200 0.8599± 0.5528E-02 100 online cut 0.8 00.8 0.9 0.95 1.05 **Background events:** 659 ± 26 L2 trigger efficiency Signal events: $4670 \pm 77(stat)^{+29}$ (syst) $(85.6 \pm 0.5(stat) \pm 0.2(syst))\%$ 0.2

Venelin Kozhuharov, KAON07

$$R_{\kappa}$$
= (2.416 ± 0.049) * 10⁻⁵

05

0.51

0.52

0.53

0.55

0.56Mfake (GeV/c²)

ΞĦ.

1.15

- Full Geant3 based simulation of the detector response
 - Geometry of the beam tuned with $K^{\pm} \rightarrow \pi^{\pm}\pi^{-}$ decays run by run

