A search for $K_{L} \rightarrow \Pi^{0} v \bar{V}$ at KEK-PS E39la experiment

Mar. 25th
KAON'07 in Frascati

Toshi SUMIDA
Kyoto University
(toshi@scphys.kyoto-u.ac.jp)
for the E391 collaboration

outline

- Background sources for $\mathrm{K}_{\mathrm{L}} \rightarrow \Pi^{0} \mathrm{~V} \overline{\mathrm{~V}}$
- Kı decays
- Halo neutrons
- Estimation of Backgrounds
- K L simulation (cf. previous talk)
- Halo neutron simulation
- Special run with π^{0} production target
- Summary

Backgrounds for $\mathrm{K}_{\mathrm{L}} \rightarrow \Pi^{0} \mathrm{~V} \overline{\mathrm{~V}}$

- $K_{L} \rightarrow \gamma \gamma$
- no extra particles
- cut: Pt, acoplanarity angle
- negligible
- $\mathrm{K}_{\mathrm{L}} \rightarrow \Pi^{0} \Pi^{0} \rightarrow 4 \gamma$
- 2 gamma missing
- cut: veto counters,"fusion" of gammas
- estimated to be 0.16 events
- $\pi^{0 \prime}$ s from the interaction of "Halo" neutrons
- neutrons around the beamline hit some detectors and produce Π^{0} 's
- cut: reconstructed vertex
- moved by shower leakage and additional energy deposition
- estimation
- Halo neutron generation with a neutral beamline simulatioin
- special run

2 gamma plot

- a tentative plot of single Π^{0} reconstruction
- using the full data of the second run in 2005
- w/ cuts for KL backgrounds
- events in the two clusters clearly seen

- up-stream: "CC02" events
- down-stream: "CV" events
- "blind" analysis: without looking at the inside the signal box

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- $w / 12 \mathrm{GeV}$ proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- $w / 12 \mathrm{GeV}$ proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Halo neutron simulation

- MC scheme: 3 steps
- target simulation
- w/ 12 GeV proton on the platinum target
- beamline simulation
- w/ particles from target sim. into the collimator system
- detector simulation
- $\mathrm{w} /$ neutrons hitting the detector

Result

- Statistics
- 2.8×10^{10} halo neutron incident (I/2.6 of data equivalent)
- downstream events are well-reproduced
- use this MC to estimate BG
- upstream events are much less than data
- neutrons w/ large angle might be not correctly reproduced
\rightarrow use data of special run for BG estimation

Downstream events

- looking at events with Π^{0} productions at CV
- data: 226 events, MC: 199 ± 24 events
- BG sources: multi Π^{0} production, direct hits of neutrons
- bifurcation method
- experience in Run-I
- work at the downstream
- BG estimation w/ MC
$N_{X Y}$: number of events w/ cuts
" - ": rejected

$$
\begin{aligned}
& N_{A B} / N_{A \bar{B} \overline{ }}=N_{\overline{A B}} / N_{\overline{A B}} \\
\Rightarrow & N_{A B}=\left(N_{\overline{A B}} \times N_{A \bar{B}} / N_{\overline{A B}}\right.
\end{aligned}
$$

$N_{A \bar{B}}$	$N_{\overline{A B}}$	rejected
$N_{A B}$	$N_{\overline{A B}}$	passed
passed	rejecte	cut A

- Cut sets
- set-up cuts
- upstream veto detectors, CsI, Π^{0} kinematics
- $\quad \operatorname{set} \mathrm{A}$
- downstream veto detectors
- set B
- gamma selection

Result of BG estimation

- Statistics: I/2.6 of data
- downstream events by Halo neutron MC
- BG events
- ~ 1.0 event in the box

$$
\begin{gathered}
\text { N_exp.(halon) } \\
=2.3 \pm 0.3 \\
\text { N_obs. }=3
\end{gathered}
$$

Upstream events

- Big discrepancy between data and MC - absolute number of Halo neutrons?
- efficiency of upstream counters?
- BG source
- shower leakage in Csl
- rec. vertex move to downstream
- estimation
- Π^{0} production target run data

Π^{0} production target run

- special run with a 5 mm thick aluminum target
- the Al target at the entrance of decay region
- "core" neutrons hit it and produce π^{0} 's
- used for correction of calibration w/ known vertex
- Half intensity of primary proton
- look at the behavior of the tail by leakage
same cuts for $\pi^{0} v \bar{v}$ analysis
- ~ 20000 CC02 events (halon MC: ~50 events)

- z : correction with the target position PDF of interaction point : $f(\exp (-x / \lambda)): \lambda=0.5 \mathrm{~cm}$

Result of position correction

- peak
- target run: 266.9, physics run: 268.7 ± 0.8
- sigma
- target run: I0.52, physics run: 13.5 ± 0.8

physics run

distributions of $\Pi^{0} s$

- momentum and pt of $\Pi 0$
- limited by the geometrical acceptance
- distributions from pi0 target run and physics run show good agreement
\Rightarrow estimate shower leakage probability

Result

- counting the number of events in the box - fit functions not used
- BG events in upstream
- $z=300-320: 13.0 \pm 0.6$ events
- $z>320: 2.3 \pm 0.3$ events

Sensitivity

- piOnn MC
- $10^{8} \mathrm{KL}$
- ex.) 40654 events in $320-500 \mathrm{~cm}$
- Acceptance
$=40654 / 10^{8} / 0.0283$ (decay prob.)
* 0.8445 (acci. loss)
$=1.21 \times 10^{-2}$
- $\quad \mathrm{NKL}=(5.35 \pm 0.74) \times 10^{9}$
- \quad SES $=1 /\left(1.21 \times 10^{-2} * 5.35 \times 10^{9}\right)$
$=1.54 \times 10^{-8}$

Summary

- we understand the behavior of backgrounds for $K_{L} \rightarrow \Pi^{0} v \bar{V}$
- KL decays
- well-reproduced by MC
- almost negligible
- Halo neutron background
- two kinds of events
- downstream
- reproduced by the combination of MC's
- upstream
- estimated of the tail events by Π^{0} production at Al target
- Result
- still more than 3.0 event
- developing further cuts
- Future
- optimize upstream halo neutron events
- examine other small background sources
\Rightarrow open the BOX!!

