A search for $K_L \rightarrow \pi^0 \sqrt{\nu}$ at KEK-PS E391a experiment

Mar. 25th KAON'07 in Frascati

Toshi SUMIDA Kyoto University (toshi@scphys.kyoto-u.ac.jp)

for the E391 collaboration

outline

- Background sources for $K_L \rightarrow \pi^0 v \overline{v}$
 - K_L decays
 - Halo neutrons
- Estimation of Backgrounds
 - K_L simulation (cf. previous talk)
 - Halo neutron simulation
 - Special run with π^0 production target
- Summary

Backgrounds for $K_L \rightarrow \pi^0 \nu \overline{\nu}$

- $K_L \rightarrow \gamma \gamma$
 - no extra particles
 - cut: Pt, acoplanarity angle
 - negligible
- $K_L \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$
 - 2 gamma missing
 - cut: veto counters, "fusion" of gammas
 - estimated to be 0.16 events
- π^{0} 's from the interaction of "Halo" neutrons
 - neutrons around the beamline
 hit some detectors and produce π⁰'s
 - cut: reconstructed vertex
 - moved by shower leakage and additional energy deposition
 - estimation
 - Halo neutron generation with a neutral beamline simulatioin
 - special run

2 gamma plot

- a tentative plot of single π^0 reconstruction
 - using the full data of the second run in 2005
 - w/ cuts for K_L backgrounds
 - events in the two clusters clearly seen
 - up-stream: "CC02" events
 - down-stream: "CV" events
- "blind" analysis: without looking at the inside the signal box

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

- MC scheme: 3 steps
 - target simulation
 - w/ I2GeV proton on the platinum target
 - beamline simulation
 - w/ particles from target sim. into the collimator system
 - detector simulation
 - w/ neutrons hitting the detector

Result

- Statistics
 - 2.8x10¹⁰ halo neutron incident (1/2.6 of data equivalent)
- downstream events are well-reproduced
 - use this MC to estimate BG
- upstream events are much less than data
 - neutrons w/ large angle might be not correctly reproduced
 - → use data of special run for BG estimation

Downstream events

Result of BG estimation

Upstream events

- Big discrepancy between data and MC
 - absolute number of Halo neutrons?
 - efficiency of upstream counters?
- BG source
 - shower leakage in Csl
 - rec. vertex move to downstream
 - estimation
 - π^0 production target run data

π⁰ production target run

- special run with a 5 mm thick aluminum target
 - the Al target at the entrance of decay region
 - "core" neutrons hit it and produce π⁰'s
 - used for correction of calibration w/ known vertex
 - Half intensity of primary proton
- Iook at the behavior of the tail by leakage
- same cuts for $\Pi^0 \vee \overline{\vee}$ analysis
 - ~ 20000 CC02 events (halon MC: ~50 events)

Position correction

2mm lead /

....

support plate(Al)

1mm lead /

fiber (BCF-91A)

2.5 m

5mm scint. (7 layers)

5mm scint. (29 layers)

1mm lead /

additional sc

....

5mm scint. (7 layers)

8cm

- π⁰ generation points are different between CC02 and the target
- convolution in π^0 reconstruction
 - R: 8cm
 - z: correction with the target position PDF of interaction point : f(exp(-x/ λ)) : λ =0.5cm

Result of position correction

- peak
 - target run: 266.9, physics run: 268.7±0.8
- sigma
 - target run: 10.52, physics run: 13.5±0.8

distributions of $\pi^{0'}s$

- momentum and pt of π0
 - Iimited by the geometrical acceptance
 - distributions from pi0 target run and physics run show good agreement
 - \Rightarrow estimate shower leakage probability

Result

- counting the number of events in the box
 - fit functions not used
- BG events in upstream
 - z=300-320: 13.0 ± 0.6 events
 - z>320 : 2.3 ± 0.3 events

- pi0nn MC
 - I0⁸ KL
 - ex.) 40654 events in 320-500cm
 - Acceptance
 - = 40654 / 10⁸ / 0.0283 (decay prob.)
 - * 0.8445 (acci. loss)
 - $= 1.21 \times 10^{-2}$
- NKL = $(5.35 \pm 0.74) \times 10^9$
- SES = $I / (I.21 \times 10^{-2} * 5.35 \times 10^{9})$
 - $= 1.54 \times 10^{-8}$

Summary

- we understand the behavior of backgrounds for $K_L \rightarrow \pi^0 v \overline{v}$
 - KL decays
 - well-reproduced by MC
 - almost negligible
 - Halo neutron background
 - two kinds of events
 - downstream
 - reproduced by the combination of MC's
 - upstream
 - stimated of the tail events by π^0 production at AI target
 - Result
 - still more than 3.0 event
 - developing further cuts
- Future
 - optimize upstream halo neutron events
 - examine other small background sources

 \Rightarrow open the BOX!!