Reduced fidelities for free fermions out of equilibrium

Gilles Parez Joint work with Vincenzo Alba LAPTh, CNRS, USMB

arXiv:2509.01608

11th Bologna Workshop on Conformal Field Theory and Integrable Models, September 2025

Reduced fidelity

Fidelity between two density matrices:

$$\mathcal{F}(\rho,\sigma) = \frac{\operatorname{Tr}(\rho\sigma)}{\sqrt{\operatorname{Tr}(\rho^2)\operatorname{Tr}(\sigma^2)}}$$

- ▶ $0 \leqslant \mathcal{F} \leqslant 1$, equals 1 iff $\rho = \sigma$
- $ightharpoonup \mathcal{F}(
 ho,\sigma) = |\langle \psi_{
 ho}|\psi_{\sigma}
 angle|^2 ext{ for }
 ho = |\psi_{
 ho}\rangle\langle\psi_{
 ho}| ext{ and } \sigma = |\psi_{\sigma}\rangle\langle\psi_{\sigma}|$
- ▶ Reduced fidelity out of equilibrium: fidelity between reduced density matrices on a subsystem *A*, evaluated at different times after a quench
- Quench: $|\Psi(t)\rangle = \mathrm{e}^{-\mathrm{i}Ht}|\Psi_0\rangle$ with

$$H(h,\gamma) = -\sum_{i=1}^{L} \left(\frac{1+\gamma}{4} \sigma_j^{\mathsf{x}} \sigma_{j+1}^{\mathsf{x}} + \frac{1-\gamma}{4} \sigma_j^{\mathsf{y}} \sigma_{j+1}^{\mathsf{y}} + \frac{h}{2} \sigma_j^{\mathsf{z}} \right)$$

and Gaussian initial states

A

Reduced Loschmidt echo

▶ Defined as fidelity between $\rho_A(0)$ and $\rho_A(t)$:

$$\mathcal{F}_A(t) = rac{\mathrm{Tr}(
ho_A(0)
ho_A(t))}{\sqrt{\mathrm{Tr}(
ho_A(0)^2)\,\mathrm{Tr}(
ho_A(t)^2)}}, \quad \Lambda_A(t) = -rac{1}{\ell}\log(\mathcal{F}_A(t))$$

- lacktriangle Exhibits singularities at critical times $t=(m+1/2)t^*$
- Related to dynamical quantum phase transitions
- Nested lightcones structure in the hydrodynamic regime

Final-state fidelity

- lacktriangle Compare $ho_A(t)$ with its infinite-time limit ho_A^∞
- ► Analytic expressions and quasiparticle picture interpretation

$$\Lambda_A^\infty(t) = \int_{-\pi}^{\pi} rac{\mathrm{d}k}{2\pi} \left(1 - \min(2| extsf{v}_k|t/\ell,1)
ight) \Lambda_k$$

$$\Lambda_k = \frac{1}{2} \log \left(\frac{1 + (2n_k - 1)^2}{2} \right) - \log \left(\frac{\sqrt{1 + 3(2n_k - 1)^2}}{2} \right)$$

Tool to study thermalization and quantum Mpemba effects

