

Bologna Workshop on:

## **CFT AND INTEGRABLE MODELS**



and their applications from gauge/gravity dualities to statistical mechanics and quantum information

Contribution ID: 247 Type: Poster

## **Emergent Hydrodynamics in the Symmetric Dyson Exclusion Process**

Thursday 4 September 2025 11:45 (5 minutes)

We study the \emph{symmetric Dyson exclusion process} (SDEP)—a lattice gas with exclusion and long-range, Coulomb—type interactions that emerge both as the maximal-activity limit of the symmetric exclusion process and as a discrete version of Dyson's Brownian motion on the unitary group. Exploiting an exact ground-state (Doob) transform, we map the stochastic generator of the SDEP onto the spin-

tfrac12 XX quantum chain, which in turn admits a free-fermion representation. This mapping yields closed, finite-size expressions for the time-dependent density and current in terms of modified lattice Bessel functions.

At macroscopic scales we conjecture that the SDEP displays \emph{ballistic}, non-local hydrodynamics governed by the continuity equation

 $\partial_t \rho + \partial_x j[\rho] = 0, \qquad j[\rho](x) = \sin(\pi \rho(x)) \sinh(\pi \mathcal{H} \rho(x)),$ 

 $where \verb|\langle| mathcal{H}| \rangle| is the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the density States of the periodic Hilbert transform, making the current agenuinely non-local functional of the periodic Hilbert transform, making the periodic$ 

Closed evolution formulas allow us to solve the melting of single- and double-block initial states, producing limit shapes and arctic curves that agree with large-scale Monte-Carlo simulations. The model thus offers a tractable example of emergent non-local hydrodynamics driven by long-range interactions.

Author: ZAHRA, Ali

Co-authors: Dr SCHÜTZ, Gunter; Dr DUBAIL, Jerome

Presenter: ZAHRA, Ali

Session Classification: Gong Session for Posters