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Random ensembles
• Important tool of quantum information theory and many-body physics

M. P. Fisher, V. Khemani, A. Nahum, and S. Vijay, Ann.
Rev. Cond. Matt. Phys. 14, 335 (2023).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum 
Information: 10th Anniversary Edition (Cambridge University Press, 2011).

Haar random unitary Random Clifford Measurements

Stabilizerness,


error correction…

Entanglement dynamics,


thermalization…

MIPT, …

{H, S, CNOT}

H S

• Haar random circuits: our benchmark. Maximally chaotic
Exact solutions via Weingarten calculus!



Permutation gates

U(π) |s⟩ = |π(s)⟩

• Permutation  permutes all possible binary strings of length k.π ∈ S2k

|s⟩ = |s1⟩ ⊗ |s2⟩ ⊗ … ⊗ |sk⟩

e.g. , etc. (1,0,0,1) → (1,1,0,0), (1,1,1,1) → (0,1,0,0)

U(π) |1001⟩ = |1100⟩

• A permutation gate   acting on k qubits is defined asU(π)

e.g.
U(π) |1111⟩ = |0100⟩

=U(π)

|1⟩

|1⟩

|1⟩

|1⟩|0⟩

|0⟩ |0⟩

|0⟩

etc.

• Permutation gates act classically on the computational basis,


But they produce entanglement when acting on generic states 



Random permutation circuits (RPC)
• We consider two ensembles of random permutations:  and  ℰGP ℰPC

Global gates (acting on  qubits)N 2-local circuits of finite depth

U2

U2

U2

UNℰPC}{ =
U2

U2

U2

UN ℰGP}{ =

1. With probability  apply a 2-body gate  to the qubits at sites 


2. Average over the set  and over the sites 

p 𝒰i,j i, j

{𝒰i,j} i, j

B. Bertini, K. Klobas, P. Kos, and D. Malz, arXiv:2508.10890 (2025).

• The dynamics is chaotic, but there are (few) constants of motion!



Main results

𝔼[Sα(ρA(t))] = 𝔼 [(1 − α)−1log2 Tr(ρα
A(t))] ρA(t) = TrĀ[ |ψt⟩⟨ψt | ]

We focus on entanglement dynamics

Averaged over random ensembles  or ℰGP ℰPC
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Main results

𝔼[Sα(ρA(t))] = 𝔼 [(1 − α)−1log2 Tr(ρα
A(t))] ρA(t) = TrĀ[ |ψt⟩⟨ψt | ]

We focus on entanglement dynamics

Bounds on the entanglement that can be generated by 
permutation circuits acting on arbitrary initial states. We show that 
they are typically saturated.1.
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Main results

𝔼[Sα(ρA(t))] = 𝔼 [(1 − α)−1log2 Tr(ρα
A(t))] ρA(t) = TrĀ[ |ψt⟩⟨ψt | ]

We focus on entanglement dynamics

Bounds on the entanglement that can be generated by 
permutation circuits acting on arbitrary initial states. We show that 
they are typically saturated.1.

2.

Averaged over random ensembles  or ℰGP ℰPC

:
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UNvs.
Infinite-time Page curves for 
averaged Rényi-2 entropies are 
different for finite  but typically 
coincide in the thermodynamic limit.
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 : constants of motion! + can be efficiently computed for 
low-entangled, shortly-correlated states
SPE

α ( |ψ⟩), z( |ψ⟩)

• IPR and participation entropy: 
Iα( |ψ⟩) = ∑

s

|⟨s |ψ⟩ |2α

• Overlap with the “maximally anti-localized” state: z( |ψ⟩) = |⟨aN |ψ⟩ |

Measures of anti-localization (spread over the 
computational basis elements) 

SPE
α ( |ψ⟩) = (1 − α)−1log2 Iα( |ψ⟩)

|aN⟩ = | + ⟩⊗N = ( |0⟩ + |1⟩)⊗N /2N/2

{
0 ≤ SPE

α ( |ψ⟩) ≤ log D

Bounds



Bounds

 : constants of motion! + can be efficiently computed for 
low-entangled, shortly-correlated states
SPE

α ( |ψ⟩), z( |ψ⟩)

• IPR and participation entropy: 
Iα( |ψ⟩) = ∑

s

|⟨s |ψ⟩ |2α

• Overlap with the “maximally anti-localized” state: z( |ψ⟩) = |⟨aN |ψ⟩ |

Measures of anti-localization (spread over the 
computational basis elements) 

SPE
α ( |ψ⟩) = (1 − α)−1log2 Iα( |ψ⟩)

|aN⟩ = | + ⟩⊗N = ( |0⟩ + |1⟩)⊗N /2N/2

Sα(ρA(t)) ≤ min[ |A | , SPE
α ( |ψ0⟩), (1 − α)−1log2 z2α]

Rényi-  entropies are bounded* α

S. Gopalakrishnan and B. Zakirov, Quantum Science
Tech. 3, 044004 (2018))* and bound typically saturated

{
0 ≤ SPE

α ( |ψ⟩) ≤ log D

|A | ≤ N/2

High localization prevents maximal entanglement saturation!



Page curve of 2-local permutation circuit
• Entropy at infinite time (circuit depth) 

vs system size: Page curve
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• Haar random circuit:

𝔼Haar[Sα(t = ∞)] = min(log 2|A|, log 2N−|A|) + O(1)



Page curve of 2-local permutation circuit
• Entropy at infinite time (circuit depth) 

vs system size: Page curve

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

|A|/N

S 2
(t
=
∞
)/
N

• Haar random circuit:

𝔼Haar[Sα(t = ∞)] = min(log 2|A|, log 2N−|A|) + O(1)

• Permutation circuit: averaged late time Rényi-2 entropies for local 
(dots) and global (solid lines) permutations

Bound!

|ϕ(θ)⟩ = (cos θ |0⟩ + sin θ |1⟩)⊗N

Initial product state

θ = π/8

N = 2,4,6,8,10,60

|A | /N



2-Local vs Global permutations
• Haar random: in sufficiently connected local circuits, averaged entropies 

coincide with those computed in the global ensemble at any finite size

𝔼GP[Trρ2
A] = q−xN + q−(1−x)N + (1 − q−xN − q−(1−x)N) 𝔼[I2] + 𝒪(q−N)

• Different situation for 2-local permutation circuits:
−𝔼GP[log Trρ2

A] ≠ − 𝔼PC[log Trρ2
A(t = ∞)] at finite size 

But they typically coincide as N → ∞
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Program
We compute the averaged bipartite entanglement in the global 
permutation ( ) and the 2-local permutation circuit ( ) 
ensembles via a replica space approach


we are interested in three aspects: 

ℰGP ℰPC

1. How much time  needs to reach stationary values?


2.  Do these coincide with ?


3.  What about local permutations ( ) and adding random 
phases (automaton circuits)?

ℰPC

ℰGP

k− k > 2

Haar random circuits: the stationary values of the circuit 
dynamics coincide with the global ensemble. + scrambling time 
ts ∼ O(log N)



2-local circuit dynamics in replica space
Replica space: 


where  and 


Purity:   


where   with  


Lindbladian dynamics:  


where   


and   

|ρA(t) ⊗ ρA(t)⟩ = 1 ⊗ ρA(t) ⊗ 1 ⊗ ρA(t) |ℐ⟩

|ℐ⟩ = | I+⟩⊗N ∈ ℋ⊗4 | I+⟩ =
1

∑
a,b=0

|aabb⟩

TrA𝔼[ρ2
A(t)] = ⟨G|A|,N−|A| |ρA(t) ⊗ ρA(t)⟩

|Gn−,n+
⟩ = | I−⟩⊗n− ⊗ | I+⟩⊗n+ | I−⟩ =

1

∑
a,b=0

|abba⟩

d
dt

𝔼[ |ρ(t)⟩ ⊗ ρ(t)] = − ℒ𝔼[ |ρ(t)⟩ ⊗ ρ(t)]

ℒ =
2λ

N − 1 ∑
⟨ j,k⟩

(1 − 𝒰j,k)

𝒰j,k = 𝔼[U*j,k ⊗ Uj,k ⊗ U*j,k ⊗ Uj,k]

1
2
3



Local dimensional reduction
Solving    is hard (exponentially large 
Hilbert space, local dimensions )


Simplifications:

d
dt

𝔼[ |ρ(t)⟩ ⊗ ρ(t)] = − ℒ𝔼[ |ρ(t)⟩ ⊗ ρ(t)]
deff = 15

Site-permutation invariance: reduces to polynomial, still large





Permutations = Cliffords: reduces dimensionality of  for typical 
(random) initial states

Dsymm = (N + deff − 1
deff − 1 ) ∼ N14

ℋeff

1
2

|ψ rand
0 ⟩ = ⊗j |ϕj⟩ = ⊗j vj |0⟩ with  Haar randomvj

          Effective numerical implementationdeff = 4 → Dsymm ∼ N3 →



2-local circuit dynamics for typical states

|ρ(t) ⊗ ρ(t)⟩ = e−ℒ̃t𝔼ϕj
[⊗jΠj | ( |ϕj⟩* |ϕj⟩)⊗2⟩]

Lindbladian dynamics for random initial states:

with  and ℒ̃ ≡ (⊗jΠj)ℒ(⊗jΠj) Πj =
1
4

3

∑
α=0

σα*
j ⊗ σα

j ⊗ σα*
j ⊗ σα

j

dGp,q,r,s(t)
dt

= ∑
{ℓk}4

k=1

c[{ℓk}]Gp+ℓ1,q+ℓ2,r+ℓ3,s+ℓ4
(t) .

Gp,q,r,s = ⟨Gp,q,r,s |ρA(t) ⊗ ρA(t)⟩

|Gp,q,r,s⟩ = | I−⟩⊗p⊗| I+⟩⊗q⊗| I0⟩⊗r⊗| Ix⟩⊗s

| I0⟩ = ∑
a=0,1

|aaaa⟩

| Ix⟩ = ∑
a,b=0,1

|abab⟩

Differential equations encoding the 
purity dynamics



2-local circuit dynamics for typical states
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Fast scrambler!  tEq ∼ O(log N)

Stationary value corresponding to  ℰPC



Remark - breaking the Clifford property
• Although permutations = Cliffords, our initial states are not stabilizers  

non-trivial behaviour


• To break Clifford property:

→

1. go from 2-local to k-local (k > 2) gates


2. Add random phases 




• k-local: known to coincide for all N


• phases:  is not conserved  bounds are given in terms of part. entropy

U(π)
ij |s1, s2⟩ = eiφs1,s2 |π(s)1, π(s)2⟩

z →

Sα(ρA(t)) ≤ min[ |A | , SPE
α ( |ψ0⟩)], |A | ≤ N/2



Random permutations + phases

a) b)

c)

Random phases  simplifications  we have results for very general 
states, including entangled states (plots)

→ →

Sα(ρA(t)) ≤ min[ |A | , SPE
α ( |ψ0⟩)]

 = product state|ψ0⟩

 = Dicke state|ψ0⟩



Outlook
• Bound for the von Neumann entropy:





   is it typically tight? 

• Which initial states saturate the bound apart from random product states?

S1(t) ≤ min [ |A | , SPE
1 ( |ψ⟩),

|A |
2

1 − z2 + O(1)], |A | ≤ N/2

• Modifying circuits? eg: by adding measurements


  We expect a non-trivial initial state dependence.

Preprint from arxiv


