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Random ensembles

* Important tool of guantum information theory and many-body physics
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- Haar random circuits: our benchmark. Maximally chaotic
-» Exact solutions via Weingarten calculus!

M. P. Fisher, V. Khemani, A. Nahum, and S. Vijay, Ann.
Rev. Cond. Matt. Phys. 14, 335 (2023).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information: 10th Anniversary Edition (Cambridge University Press, 2011).



Permutation gates

- Permutation 7# € S,« permutes all possible binary strings of length «.

e.g. (1,0,0,1) — (1,1,0,0), (1,1,1,1) = (0,1,0,0), etc.

- A permutation gate U (7) acting on & qubits is defined as

U |s) = | n(s)) () =15) @ [5) ® ... ® [sy)
nO - O— 1
o U™ |1111) = |0100) 0O W[ O
.g. etc. i =
U@ [1001) = | 1100) 00O - O 10
O — O 0

- Permutation gates act classically on the computational basis,

But they produce entanglement when acting on generic states



Random permutation circuits (RPC)

- We consider two ensembles of random permutations: &gp and &pc

{ U, } = &qp { [: ‘:fz | } = Epc
) D =z
|P) |D) |@D) |D) P |D) |P) |

Global gates (acting on N qubits) 2-local circuits of finite depth

1. With probability p apply a 2-body gate Cle-,j to the qubits at sites 1, J ‘)

2. Average over the set {CZZZ-, J-} and over the sites i, j

* The dynamics is chaotic, but there are (few) constants of motion!

B. Bertini, K. Klobas, P. Kos, and D. Malz, arXiv:2508.10890 (2025).



Main results 566880688

We focus on entanglement dynamics A A A

E[S,(pa)] = E [(1 — )~ 'log, Tr(pg (1)) PA®) = Trz[ )y | ]

L_/ Averaged over random ensembles & p Or Epc
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We focus on entanglement dynamics A A A

E[S,(pa)] = E [(1 — )~ 'log, Tr(pg (1)) PA®) = Trz[ )y | ]

L_/ Averaged over random ensembles & p Or Epc

permutation circuits acting on arbitrary initial states. We show that

1 Bounds on the entanglement that can be generated by
they are typically saturated.



Main results 566880688

We focus on entanglement dynamics A A A
E[S,(p4a(®)] = E [(1 — a)~'log, Tr(p(1))] pa(t) = Trgl [w)(w; | ]

L_/ Averaged over random ensembles & p Or Epc

Bounds on the entanglement that can be generated by
1 permutation circuits acting on arbitrary initial states. We show that

they are typically saturated.

Infinite-time Page curves for
. averaged Reényi-2 entropies are

'~ different for finite N but typically
coincide in the thermodynamic limit.




Bounds

LAw) =) Uslw) ™
* IPR and participation entropy: { $

SPE(ly)) = (1 — @) Mog, L(w))

Measures of anti-localization (spread over the 0 < SPE(|1//>) <logD
computational basis elements) = Fa =

 Overlap with the “maximally anti-localized” state: z(|y)) = |[{ay|y) |
lay) = | +)BY = (]0) + | 1))@V /2V>

SPEClw)), z(|y)) : constants of motion! + can be efficiently computed for
low-entangled, shortly-correlated states
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SPEClw)), z(|y)) : constants of motion! + can be efficiently computed for
low-entangled, shortly-correlated states

Rényi-a entropies are bounded*

S, (pa(®) <min[|A ], S;5(Jyp)). (1 — )~ 'log, 2% |A] < N/2

______ por

High localization prevents maximal entanglement saturation!

. S. Gopalakrishnan and B. Zakirov, Quantum Science
* and bound typically saturated Toch. 3, 044004 (2018)



Page curve of 2-local permutatlon mrcmt

* Entropy at infinite time (circuit depth)
vs system size: Page curve

e Haar random circuit:

Eppo0rlS,(f = 00)] = min(log 21 1og 2V=141) 4 O(1)
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Page curve of 2-local permutatlon mrcmt

* Entropy at infinite time (circuit depth)

vs system size: Page curve
Z
Haar random circuit: §°'3
502
Epaar Sa(f = c0)] = min(log 2|A|, log 2N_|A|) + O(1)
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Permutation circuit: averaged late time Rényi-2 entropies for local
(dots) and global (solid lines) permutations

| Initial product state
| 1)) = (cos0]0) + sin@| 1))
0 = rx/8

N =24,6,8,10,60




2-Local vs Global permutations

 Haar random: in sufficiently connected local circuits, averaged entropies
coincide with those computed in the global ensemble at any finite size

 Different situation for 2-local permutation circuits:
—Egpllog Trp:] # — Epcllog Trpi(t = c0)]  at finite size
But they typically coincide as N — oo

0.5
£ 04 Initial random
EQ 0.3 product state
=02 j
g |
T 0.1 K/

0.0

X
EgplTrp2] = =N + g~ 4 (1 — g™V — g==9N) E[L,] + 6(¢g™N)



Program

We compute the averaged bipartite entanglement in the global

permutation (& ;p) and the 2-local permutation circuit (&p()
ensembles via a replica space approach

we are interested in three aspects:

1. How much time &p. needs to reach stationary values?

2. Do these coincide with & p?

3. What about k—local permutations (k > 2) and adding random
phases (automaton circuits)?

Haar random circuits: the stationary values of the circuit
dynamics coincide with the global ensemble. + scrambling time

t, ~ O(logN)



2-local circuit dynamics in replica space
Replica space: |p (1) & ps(1)) =1 ® p (1) @ 1 & py(1) | F)

1
where | .7) = |I")®" € #®*and |I*) = ) |aabb)
a,b=0

Purity: TraE[p3(1)] = (Giajn=1a] | Pa@) ® p4(D))

1
> — |I_>®n_ ® |I+>®n+ with |I_> — Z |abba>
a,b=0

where |G

n_,n,

d
Lindbladian dynamics: E[E [ | p() ® p(t)] =—<%E [ |1 p(1) ® p(t)]

24
where & = N_1 Z (1 —=%;,)
(k)

and U;; = [E[Ufk QU ;& U]*k ® Ul




Local dimensional reduction

Solving %[E“p(t)) ® p(n)| = — ZE||p()) ® p(1)| is hard (exponentially large

Hilbert space, local dimensions d . = 15)

Simplifications:

Site-permutation invariance: reduces to polynomial, still large

p o (NFtdea=1Y _ 4
symm dﬂr—l
e

Permutations = Cliffords: reduces dimensionality of #Z 4 for typical
(random) initial states

ly" ) = ®; 1) = ®;v;|0)  with v; Haar random

d F = 4 - 1D v N’ — Effective numerical implementation



2-local circuit dynamics for typical states

Lindbladian dynamics for random initial states:

p(t) ® p(1) = e~ E 4 [T (1)* | ;)]

L, ey . )
with & = (QI1)Z(QI1) and I1; = ZZ 67" ® 6'® 0%’ ® oF
a=0

Differential equations encoding the
purity dynamics

dG, .. (1)

p.q.r.s
dt - Z C[{fk}]Gp+f1,q+f2,r+f3,s+f4(t) -
{1z
0y _
G, grs = (G g5l PA0) @ py(D)) | 17) = ZOI |aaaa)
|G grs) = )P QIR I7) @ | I)®* [Fy=)|abab)

a,b=0,1



2-local circuit dynamics for typical states

Stationary value corresponding to &p

60% 94
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Fast scrambler! fp, ~ O(log N)



Remark - breaking the Clifford property

 Although permutations = Cliffords, our initial states are not stabilizers —
non-trivial behaviour

» To break Clifford property:

1. go from 2-local to k-local (k > 2) gates

2. Add random phases
() _ L,
UP [51,5,) = 2| 7(s),, 7(s),)
 k-local: known to coincide for all N

- phases: 7 is not conserved — bounds are given in terms of part. entropy

Se(pa(®) <min[ |[A], S "(lyp)], [A| < NJ/2



Random permutations + phases

Random phases — simplifications — we have results for very general
states, including entangled states (plots)
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Outlook

* Bound for the von Neumann entropy:

S,(f) < min |A| SPE(| ), —\/l—z +0(1) . |A| < N/2

is it typically tight?
- Which initial states saturate the bound apart from random product states?

- Modifying circuits? eg: by adding measurements

Preprint from arxiv




