

Entanglement dynamics and Page curves in random permutation circuits*

11th Bologna Workshop on CFT and Integrable Models - Bologna, 2–5 Sept 2025

Dávid Szász-Schagrin¹

Michele Mazzoni¹

Bruno Bertini²

Katja Klobas² & Lorenzo Piroli¹

Random ensembles

Important tool of quantum information theory and many-body physics

- · Haar random circuits: our benchmark. Maximally chaotic
 - → Exact solutions via Weingarten calculus!

Permutation gates

• Permutation $\pi \in S_{2^k}$ permutes all possible binary strings of length k.

e.g.
$$(1,0,0,1) \rightarrow (1,1,0,0), (1,1,1,1) \rightarrow (0,1,0,0),$$
 etc.

• A permutation gate $U^{(\pi)}$ acting on k qubits is defined as

$$U^{(\pi)}|s\rangle = |\pi(s)\rangle \qquad |s\rangle = |s_1\rangle \otimes |s_2\rangle \otimes \dots \otimes |s_k\rangle$$

e.g.
$$U^{(\pi)}|1111\rangle = |0100\rangle$$
 etc. $|0\rangle\bigcirc$ $U^{(\pi)}|1001\rangle = |1100\rangle$

Permutation gates act classically on the computational basis,

But they produce entanglement when acting on generic states

Random permutation circuits (RPC)

• We consider two ensembles of random permutations: $\mathcal{E}_{\mathrm{GP}}$ and $\mathcal{E}_{\mathrm{PC}}$

$$\left\{\begin{array}{c|c} U_{N} \\ \hline \end{array}\right\} = \mathscr{E}_{GP}$$

$$|\phi\rangle |\phi\rangle |\phi\rangle |\phi\rangle$$

$$\left\{\begin{array}{c|c} & U_2 \\ \hline & U_2 \\ \hline & U_2 \\ \hline & \phi \rangle |\phi \rangle |\phi \rangle |\phi \rangle \\ \hline |\phi \rangle |\phi \rangle |\phi \rangle |\phi \rangle \end{array}\right\} = \mathscr{E}_{PC}$$

Global gates (acting on N qubits)

2-local circuits of finite depth

- 1. With probability p apply a 2-body gate $\mathcal{U}_{i,j}$ to the qubits at sites i,j
- 2. Average over the set $\{\mathcal{U}_{i,j}\}$ and over the sites i,j
- The dynamics is chaotic, but there are (few) constants of motion!

Main results

We focus on entanglement dynamics

$$\mathbb{E}[S_{\alpha}(\rho_{A}(t))] = \mathbb{E}\left[(1-\alpha)^{-1}\log_{2}\operatorname{Tr}(\rho_{A}^{\alpha}(t))\right] \qquad \rho_{A}(t) = \operatorname{Tr}_{\bar{A}}[|\psi_{t}\rangle\langle\psi_{t}|]$$

Averaged over random ensembles $\mathcal{E}_{\mathrm{GP}}$ or $\mathcal{E}_{\mathrm{PC}}$

Main results

We focus on entanglement dynamics

focus on **entanglement dynamics**
$$A$$
 A

$$\mathbb{E}[S_{\alpha}(\rho_{A}(t))] = \mathbb{E}\left[(1-\alpha)^{-1}\log_{2}\operatorname{Tr}(\rho_{A}^{\alpha}(t))\right] \qquad \rho_{A}(t) = \operatorname{Tr}_{\bar{A}}[\,|\psi_{t}\rangle\langle\psi_{t}|\,]$$
 Averaged over random ensembles $\mathscr{C}_{\mathrm{GP}}$ or $\mathscr{C}_{\mathrm{PC}}$

Bounds on the entanglement that can be generated by permutation circuits acting on arbitrary initial states. We show that they are typically saturated.

Main results

We focus on entanglement dynamics

$$ar{A}$$
 $ar{A}$

$$\mathbb{E}[S_{\alpha}(\rho_{A}(t))] = \mathbb{E}\left[(1-\alpha)^{-1}\mathrm{log}_{2}\operatorname{Tr}(\rho_{A}^{\alpha}(t))\right] \qquad \rho_{A}(t) = \mathrm{Tr}_{\bar{A}}[\,|\psi_{t}\rangle\langle\psi_{t}|\,]$$
 Averaged over random ensembles $\mathscr{E}_{\mathrm{GP}}$ or $\mathscr{E}_{\mathrm{PC}}$

Bounds on the entanglement that can be generated by permutation circuits acting on arbitrary initial states. We show that they are typically saturated.

coincide in the thermodynamic limit.

Bounds

• IPR and participation entropy:
$$\begin{cases} I_{\alpha}(|\psi\rangle) = \sum_{s} |\langle s|\psi\rangle|^{2\alpha} \\ S_{\alpha}^{\text{PE}}(|\psi\rangle) = (1-\alpha)^{-1} \log_2 I_{\alpha}(|\psi\rangle) \end{cases}$$

Measures of anti-localization (spread over the $0 \le S_{\alpha}^{\text{PE}}(|\psi\rangle) \le \log D$ computational basis elements)

• Overlap with the "maximally anti-localized" state: $z(|\psi\rangle) = |\langle a_N | \psi \rangle|$ $|a_N\rangle = |+\rangle^{\otimes N} = (|0\rangle + |1\rangle)^{\otimes N}/2^{N/2}$

 $S_{\alpha}^{\text{PE}}(|\psi\rangle), z(|\psi\rangle)$: constants of motion! + can be efficiently computed for low-entangled, shortly-correlated states

Bounds

• IPR and participation entropy:
$$\begin{cases} I_{\alpha}(|\psi\rangle) = \sum_{s} |\langle s|\psi\rangle|^{2\alpha} \\ S_{\alpha}^{\text{PE}}(|\psi\rangle) = (1-\alpha)^{-1} \log_2 I_{\alpha}(|\psi\rangle) \end{cases}$$

Measures of anti-localization (spread over the computational basis elements)

$$0 \le S_{\alpha}^{\text{PE}}(|\psi\rangle) \le \log D$$

• Overlap with the "maximally anti-localized" state: $z(|\psi\rangle) = |\langle a_N | \psi \rangle|$

$$|a_N\rangle = |+\rangle^{\otimes N} = (|0\rangle + |1\rangle)^{\otimes N}/2^{N/2}$$

 $S_{\alpha}^{\text{PE}}(|\psi\rangle), z(|\psi\rangle)$: constants of motion! + can be efficiently computed for low-entangled, shortly-correlated states

Rényi- α entropies are bounded*

$$S_{\alpha}(\rho_{A}(t)) \le \min[|A|, S_{\alpha}^{PE}(|\psi_{0}\rangle), (1-\alpha)^{-1}\log_{2}z^{2\alpha}] \quad |A| \le N/2$$

High localization prevents maximal entanglement saturation!

Page curve of 2-local permutation circuit

- Entropy at infinite time (circuit depth)
 vs system size: Page curve
- Haar random circuit:

$$\mathbb{E}_{\text{Haar}}[S_{\alpha}(t = \infty)] = \min(\log 2^{|A|}, \log 2^{N - |A|}) + O(1)$$

Page curve of 2-local permutation circuit

- Entropy at infinite time (circuit depth)
 vs system size: Page curve
- Haar random circuit:

$$\mathbb{E}_{\text{Haar}}[S_{\alpha}(t=\infty)] = \min(\log 2^{|A|}, \log 2^{N-|A|}) + O(1)$$

 Permutation circuit: averaged late time Rényi-2 entropies for local (dots) and global (solid lines) permutations

Initial product state

$$|\phi(\theta)\rangle = (\cos\theta |0\rangle + \sin\theta |1\rangle)^{\otimes N}$$

 $\theta = \pi/8$
 $N = 2,4,6,8,10,60$

2-Local vs Global permutations

- Haar random: in sufficiently connected local circuits, averaged entropies coincide with those computed in the global ensemble at any finite size
- Different situation for 2-local permutation circuits:

$$-\mathbb{E}_{GP}[\log \operatorname{Tr} \rho_A^2] \neq -\mathbb{E}_{PC}[\log \operatorname{Tr} \rho_A^2(t=\infty)]$$
 at finite size

But they **typically** coincide as $N \to \infty$

$$\mathbb{E}_{GP}[\operatorname{Tr}\rho_A^2] = q^{-xN} + q^{-(1-x)N} + \left(1 - q^{-xN} - q^{-(1-x)N}\right) \mathbb{E}[I_2] + \mathcal{O}(q^{-N})$$

Program

We compute the averaged bipartite entanglement in the global permutation (\mathcal{E}_{GP}) and the 2-local permutation circuit (\mathcal{E}_{PC}) ensembles via a replica space approach

we are interested in three aspects:

- 1. How much time \mathscr{E}_{PC} needs to reach stationary values?
- 2. Do these coincide with $\mathcal{E}_{\mathrm{GP}}$?
- **3.** What about k-local permutations (k > 2) and adding random phases (automaton circuits)?

Haar random circuits: the stationary values of the circuit dynamics coincide with the global ensemble. + scrambling time $t_{s} \sim O(\log N)$

2-local circuit dynamics in replica space

Replica space: $|\rho_A(t) \otimes \rho_A(t)\rangle = \mathbf{1} \otimes \rho_A(t) \otimes \mathbf{1} \otimes \rho_A(t) |\mathcal{F}\rangle$

where
$$|\mathscr{F}\rangle=|I^+\rangle^{\otimes N}\in\mathscr{H}^{\otimes 4}$$
 and $|I^+\rangle=\sum_{a,b=0}^1|aabb\rangle$

Purity:
$$\operatorname{Tr}_A \mathbb{E}[\rho_A^2(t)] = \langle G_{|A|,N-|A|} | \rho_A(t) \otimes \rho_A(t) \rangle$$

where
$$|G_{n_-,n_+}\rangle=|I^-\rangle^{\otimes n_-}\otimes |I^+\rangle^{\otimes n_+}$$
 with $|I^-\rangle=\sum_{a,b=0}^1|abba\rangle$

Lindbladian dynamics:
$$\frac{d}{dt}\mathbb{E}\big[|\rho(t)\rangle\otimes\rho(t)\big] = -\,\mathcal{L}\mathbb{E}\big[|\rho(t)\rangle\otimes\rho(t)\big]$$

where
$$\mathscr{L} = \frac{2\lambda}{N-1} \sum_{\langle j,k \rangle} (1-\mathscr{U}_{j,k})$$

and
$$\mathcal{U}_{j,k} = \mathbb{E}[U_{j,k}^* \otimes U_{j,k} \otimes U_{j,k}^* \otimes U_{j,k}]$$

Local dimensional reduction

Solving $\frac{d}{dt}\mathbb{E}\big[|\rho(t)\rangle\otimes\rho(t)\big]=-\mathcal{L}\mathbb{E}\big[|\rho(t)\rangle\otimes\rho(t)\big]$ is hard (exponentially large Hilbert space, local dimensions $d_{\mathrm{eff}}=15$)

Simplifications:

Site-permutation invariance: reduces to polynomial, still large

$$D_{\text{symm}} = \begin{pmatrix} N + d_{\text{eff}} - 1 \\ d_{\text{eff}} - 1 \end{pmatrix} \sim N^{14}$$

Permutations = Cliffords: reduces dimensionality of $\mathcal{H}_{\mathrm{eff}}$ for typical (random) initial states

$$|\psi_0^{\text{rand}}\rangle = \bigotimes_j |\phi_j\rangle = \bigotimes_j v_j |0\rangle$$
 with v_j Haar random

$$d_{\rm eff} = 4 \rightarrow D_{\rm symm} \sim N^3 \rightarrow {\rm Effective\ numerical\ implementation}$$

2-local circuit dynamics for typical states

Lindbladian dynamics for random initial states:

$$|\rho(t)\otimes\rho(t)\rangle=e^{-\tilde{\mathcal{L}}t}\mathbb{E}_{\phi_j}[\otimes_j\Pi_j|(|\phi_j\rangle^*|\phi_j\rangle)^{\otimes 2}\rangle]$$

with
$$\tilde{\mathscr{L}} \equiv (\bigotimes_{j} \Pi_{j}) \mathscr{L}(\bigotimes_{j} \Pi_{j})$$
 and $\Pi_{j} = \frac{1}{4} \sum_{\alpha=0}^{3} \sigma_{j}^{\alpha*} \otimes \sigma_{j}^{\alpha} \otimes \sigma_{j}^{\alpha*} \otimes \sigma_{j}^{\alpha}$

Differential equations encoding the purity dynamics

$$\frac{dG_{p,q,r,s}(t)}{dt} = \sum_{\{\ell_k\}_{k=1}^4} c[\{\ell_k\}] G_{p+\ell_1,q+\ell_2,r+\ell_3,s+\ell_4}(t).$$

$$G_{p,q,r,s} = \langle G_{p,q,r,s} | \rho_A(t) \otimes \rho_A(t) \rangle$$

$$|G_{p,q,r,s}\rangle = |I^{-}\rangle^{\otimes p} \otimes |I^{+}\rangle^{\otimes q} \otimes |I^{0}\rangle^{\otimes r} \otimes |I^{x}\rangle^{\otimes s}$$

$$|I^0\rangle = \sum |aaaa\rangle$$

$$|I^{x}\rangle = \sum_{a,b=0,1}^{a=0,1} |abab\rangle$$

2-local circuit dynamics for typical states

Fast scrambler! $t_{\rm Eq} \sim O(\log N)$

Remark - breaking the Clifford property

- Although permutations = Cliffords, our initial states are not stabilizers → non-trivial behaviour
- To break Clifford property:
 - 1. go from 2-local to k-local (k > 2) gates
 - 2. Add random phases

$$U_{ij}^{(\pi)} | s_1, s_2 \rangle = e^{i\varphi_{s_1, s_2}} | \pi(s)_1, \pi(s)_2 \rangle$$

- k-local: known to coincide for all N
- phases: z is not conserved \rightarrow bounds are given in terms of part. entropy

$$S_{\alpha}(\rho_A(t)) \le \min[|A|, S_{\alpha}^{PE}(|\psi_0\rangle)], |A| \le N/2$$

Random permutations + phases

Random phases \rightarrow simplifications \rightarrow we have results for very general states, including entangled states (plots)

Outlook

Bound for the von Neumann entropy:

$$S_1(t) \le \min\left[|A|, S_1^{\text{PE}}(|\psi\rangle), \frac{|A|}{2}\sqrt{1-z^2} + O(1)\right], \quad |A| \le N/2$$

is it typically tight?

- Which initial states saturate the bound apart from random product states?
- Modifying circuits? eg: by adding measurements

We expect a non-trivial initial state dependence.

