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Introduction and Motivation I

Study of the quantum effective actions in a black hole background
was settled in Denef-Hartnoll-Sachdev [0908.2657], where a formula
for the computation of determinants in thermal spacetimes in terms
of QNMs was proposed, based on analytic properties of the effective
action of Euclidean quantum gravity:

Z ∝
∏

ωQNM

√
ωQNM ωQNM

2πT
∏
n≥0

(
n + i ωQNM

2πT

)−1 (
n − i ωQNM

2πT

)−1

(1)
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Introduction and Motivation II

The low-temperature breakdown of black hole thermodynamics
for extremal black holes was pointed out more than thirty years
ago.
The resolution of this puzzle did not require knowledge of the
full path integral (quantum gravity) and was first achieved by a
careful treatment of certain zero modes in the extremal
solution.
The fact that temperature effectively acts as a coupling
constant and that the low-temperature regime is a quantum
regime was understood first in the context of two-dimensional
JT gravity.
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Introduction and Motivation III

The key realization resides in understanding that the
near-horizon region of higher-dimensional black holes may
contain a JT subsector that dominates the full path integral.
Any higher-dimensional gravity theory admitting near-extremal
solutions can admit such zero modes and, consequently, the
low-temperature thermodynamics will be accordingly corrected.
The path integral over these zero modes leads to an infrared
divergence in the one-loop approximation to the Euclidean
partition function. This divergence can be regulated turning on
a small but finite temperature correction in the geometry,
leading to the thermodynamic correction 3

2 log THawking.
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Klein-Gordon equation

Let us consider the Klein-Gordon differential operator[ 1√
−g ∂µ

(√
−g gµν∂ν

)
− µ2

]
Φ ≡

[
□ − µ2

]
Φ = 0, (2)

where gµν is the metric of the spacetime and µ is the mass of the
scalar field.
We are interested in problems with enough symmetries so that we
can separate the variable dependences. We use the following
decomposition in Fourier modes of the wave function Φ

Φ(t, r ,Ω) =
∫ ∞

−∞
dω

∑
ℓ,m⃗

e−iωtSω,ℓ,m⃗(Ω)Rω,ℓ,m⃗(r). (3)
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Decomposition of the determinant
Starting from the problem(

□ − µ2
)

Φ = λΦ, (4)

and using (3), we obtain a system of coupled second-order
differential equations for Sω,ℓ,m⃗(Ω) and Rω,ℓ,m⃗(r), of the form

DradRω,ℓ,m⃗(r) = (Aℓm⃗ + λ) Rω,ℓ,m⃗(r),
DangSω,ℓ,m⃗(Ω) = −Aℓm⃗ Sω,ℓ,m⃗(Ω),

(5)

for some second-order differential operators Drad and Dang, and
where Aℓm⃗ denotes the separation constant at fixed values of the
quantum numbers.
The full determinant has an expression of the form

log
(
det

(
□ − µ2

))
≡

∫ ∞

−∞
dω

∑
ℓ,m⃗

log (det (Drad − Aℓm⃗) [ω]) . (6)
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Radial Problem - Fuchsian Case

We first introduce a new variable z sending the points where the
boundary conditions are imposed at z = 0 and z = 1, and we
redefine the wave function so that the differential equation is in
normal form.
Let

ψ
(ẑ)
i ,λ (z) = (z − ẑ)

1
2 ±aẑ [1 + O(z − ẑ)] , i = 1, 2 (7)

be the fundamental system of local solutions around z = ẑ .
Let us denote with ψ(ẑ)

1,λ(z) the solution selected by the boundary
condition at z = ẑ . Using the connection formulae, we can write

ψ
(0)
1,λ(z) = C11,λ ψ

(1)
1,λ(z) + C12,λ ψ

(1)
2,λ(z), (8)

where we denote with C11,λ, C12,λ the connection coefficients, which
depend on λ (but are independent of z).
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Radial determinant

We introduce a reference problem whose differential operator D̃rad
is a hypergeometric one, obtained by keeping the indices of the
singular points at z = 0 and z = 1 fixed.
We proved

det (Drad − Aℓm)
det

(
D̃rad

) = C12,λ=0

C̃12,λ=0
. (9)

Finally, we can compute the regularized determinant for the
reference hypergeometric potential. This provides a solution for the
determinant of the radial differential operator, which is of the form

det (Drad − Aℓm) = 2π C12,λ=0
Γ(1 + 2θ0a0)Γ(2θ1a1) , (10)

where a0, a1 denote the indices of the singularities at z = 0 and
z = 1.
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Heun’s connection coefficients

The Heun connection coefficients were obtained by considering
The connection formulas for semiclassical Virasoro conformal
blocks, obtained by crossing symmetry from different
expansions of the same correlation function with a degenerate
insertion;
The AGT correspondence, relating 2d Liouville CFT and 4d
SUSY gauge theory.

Assuming 0 < t ≪ 1 and Re(a0),Re(a1) > 0,

det(Drad − Aℓm) =
∑

θ′=±

2πΓ(−2θ′a)Γ(1 − 2θ′a)∏
σ=± Γ

(
1
2 + a0 − θ′a + σ at

)
Γ

(
1
2 − θ′a + a1 + σ a∞

)×

× ta0+θ′a exp
(1

2∂a0F (t) + 1
2∂a1F (t) − θ′

2 ∂aF (t)
)
.

(11)
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Wick Rotation

If we Wick rotate the spacetime metric to real-time by defining
t = iτ , where τ has periodicity equal to the inverse of the
temperature TH , we can introduce the thermal frequencies by
setting

ωk = 2πi k TH , k ∈ Z, (12)

and we can match our results with the ones in DHS in the
hypergeometric cases.
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Kerr black hole
The four-dimensional asymptotically flat Kerr black hole metric in
the Boyer-Lindquist coordinates is

ds2 = − dt2 + dr2 + 2 aBH sin2 θ dr dϕ

+
(
r2 + a2

BH cos2 θ
)

dθ2 +
(
r2 + a2

BH

)
sin2 θ dϕ2

+ 2 M r
r2 + a2

BH cos2 θ

(
dt + dr + aBH sin2 θ dϕ

)2
,

(13)

where M is the mass of the black hole and aBH is the parameter
describing its angular momentum.
The radial geometry admits two horizons: the event horizon
Rh = M +

√
M2 − a2

BH and an inner Cauchy horizon

Ri = M −
√

M2 − a2
BH.

The temperature and the angular velocity at the event horizon read

TH = Rh − Ri
8πMRh

, ΩH = aBH
2MRh

. (14)
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Teukolsky formalism
Based on the Newman-Penrose formalism, Teukolsky showed that in
terms of curvature invariants, the perturbation equations decouple
and separate for all Petrov type-D spacetimes.
Considering the Fourier-transform of a spin-s field Φ(t, r , θ.ϕ) and
expanding it in spin-weighted spheroidal harmonics, both the radial
and angular equations can be rewritten as confluent Heun equations.
For the radial problem, we have

Dψ ≡ ψ′′(z) +
[u − 1

2 + a2
0 + a2

1
z(z − 1) +

1
4 − a2

1
(z − 1)2 +

1
4 − a2

0
z2 + µ ϵ

z − ϵ2

4

]
ψ(z) = 0,

(15)
where

z = r − Ri
Rh − Ri

, ϵ = −16 i πM ω Rh TH , µ = s − 2i M ω,

a0 = i ω − mΩH
4πTH

− 2iMω − s
2 , a1 = i ω − mΩH

4πTH
+ s

2 ,

µ1 = a0 − a1 = −s − 2i M ω, µ2 = −a0 − a1 = 2i M ω − i ω − mΩH
2πTH

.
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Radial Problem

The relevant connection formula reads
e−ϵzz

α
ϵ

−γ−δHeunC∞(q − γϵ, α− ϵ(γ + δ), γ, δ,−ϵ; z) = ϵ
1
2 −µe− 1

2 ∂µF ×[ ∑
σ=±

Γ (−2σa) Γ (1 − 2σ a) Γ (2a1) ϵσae− σ
2 ∂aF+ 1

2 ∂a1 F

Γ
(

1
2 − µ1 − σa

)
Γ

(
1
2 − µ2 − σa

)
Γ

(
1
2 − µ− σa

)HeunC(q − α,−α, δ, γ,−ϵ; 1 − z)

+
∑
σ=±

Γ (−2σa) Γ (1 − 2σ a) Γ (−2a1) ϵσae− σ
2 ∂aF− 1

2 ∂a1 F

Γ
(

1
2 + µ1 − σa

)
Γ

(
1
2 + µ2 − σa

)
Γ

(
1
2 − µ− σa

)(1 − z)1−δHeunC (q̃,−α− (1 − δ)ϵ, 2 − δ, γ,−ϵ; 1 − z)
]
,

(16)
where q̃ = q − α− (1 − δ)(ϵ+ γ) and a is the composite
monodromy parameter around the singularities at z = 0 and z = 1.
At fixed quantum numbers ℓ,m, s, the contribution of the QNMs to
the determinant is

det[Kerr]
(ℓ,m,s) =

√
2π

∑
σ=±

Γ (−2σa) Γ (1 − 2σa) ϵ 1
2 −µ+σae− 1

2 (σ∂a+∂a1 +∂µ)F

Γ
(

1
2 + µ1 − σa

)
Γ

(
1
2 + µ2 − σa

)
Γ

(
1
2 − µ− σa

) .
(17)
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Zero-damping modes

The exact quantization condition for QNMs follows by studying the
zeros of (17). In the confluent limit corresponding to the extremal
Kerr case in which the horizons Rh and Ri coalesce, ϵ → 0, and
µ2 → ∞, in such a way that Λ ≡ ϵ µ2 is finite. In this limit, an
entire branch of solutions associated to the poles of the Γ function
Γ

(
1
2 + µ2 + a

)
decouples from the spectrum: these are of the form

ω⋆
n,ℓ,m = m

2aBH
− 2πi TH

(
n + 1

2 + 1
2

√
4sA(0)

ℓ m − 7m2 + (1 + 2s)2
)

+ O
(
T 2

H

)
,

(18)
and they have a parametrically small negative imaginary part.
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Factorization of the determinant

Let us now focus on the contribution to the effective action of the
Γ-function from which ZDMs can arise, and compute the
corresponding leading contribution in the Hawking temperature.
In the small temperature (or ϵ) regime, we can rewrite (17) as

det[NEK]
(ℓ,m,s) = det[ZDM]

(ℓ,m,s)

[
det[EK]

(ℓ,m,s) + O (ϵ)
]
, (19)

where

det[ZDM]
(ℓ,m,s) =

√
2π ϵ 1

2 −µ (ϵ/Λ)a

Γ
(

1
2 + µ2 − a

) , (20)

det[EK]
(ℓ,m,s) =

∑
σ=±

Γ (−2σa) Γ (1 − 2σa) Λσae− 1
2 (σ∂a+∂a1 +∂µ)F

Γ
(

1
2 + µ1 − σa

)
Γ

(
1
2 − µ− σa

) . (21)
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Temperature corrections
For s = 1, 2,
∏
ℓ≥s

ℓ∏
m=−ℓ

∏
k≥0

 1
det[ZDM]

(ℓ,m,s)

∣∣∣∣
ω=ω

(M)
k

 ∝
∏
ℓ≥s

ℓ∏
m=−ℓ

∏
k≥0

Γ
(1

2 + µ2 − a
) ∣∣∣∣

ω=ω
(M)
k

∝ T
s
2 − 1

4
H ,

(22)
where a ζ-regularization for infinite products has been used.
The electromagnetic/gravitational perturbations are described by
the Teukolsky equation with s = ±1, 2 which correspond to the two
helicity states of the on-shell photon/graviton. These give the same
contributions thanks to the symmetry of the separation constant

−sAℓm = sAℓm + 2s. (23)
Taking into account that the one-loop partition function is
proportional to the inverse square root of the determinant, we
conclude

ZNEK
1-loop ∼ 1√

|det[ZDM]|2
1√

|det[EK]|2
∝ T s− 1

2
H . (24)
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Outlook
In 2506.08959 we extend our analysis to near-extremal (A)dS4 Kerr.

We find that the presence of log(T) corrections is a distinctive
feature of the confluence limit of the radial Teukolsky equation,
describing cold near-extremal geometries. In particular, the result is
universal, depending only on the approaching inner and outer
horizons, independently of the asymptotic geometry.
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