An integrable deformed Landau-Lifshitz model with particle production?

Andrea Fontanella

Trinity College Dublin

Talk at the 11th Bologna Workshop on CFT and Integrable Models, $02\text{-}05~\mathrm{Sep}~2025$

Based on arXiv:2506.13598 with M. de Leeuw and J.M. Nieto García

Introduction

Quantum integrable systems are solutions of the Yang-Baxter Equation

$$R_{12}(u,v)R_{13}(u,w)R_{23}(v,w) = R_{23}(v,w)R_{13}(u,w)R_{12}(u,v)$$

 4×4 R-matrix: all solutions have been found!

Regular: R(u, u) = P

▶ Difference form [de Leeuw, Pribytok, Ryan (2019)]

Non-difference form [Corcoran, de Leeuw (2023)]

Non-regular: R(u, u) = const.

▶ Difference + Non-difference form [de Leeuw, Posch (2024)]

Past work on solutions of YBE: [Kulish, Sklyanin, (1982)], [Sogo, Uchinami, Akutsu, Wadati (1982)], [Drinfeld (1985)], [Jimbo, (1985], [Fonseca, Frappat, Ragoucy (2015)], [R.S. Vieira (2018)] $d^2 \times d^2 \text{ R-matrix}, d = 3, 4, \text{ using Machine Learning [Lal,Majumder, Sobko (2025)]}$

The classification of "de Leeuw, Pribytok, Ryan (2019)"

All regular 4×4 R-matrix of difference form

The Heisenberg XXX spin chain appears in the list!

New non-Hermitian deformations of XXX spin chain: Class 5 and 6

Main question:

If the continuum limit of the XXX spin chain is the Landau-Lifshitz model, what is the continuum limit of the Class 5 and 6 spin chains?

Answer:

A non-unitary, integrable deformation of the LL theory.

Class 5 is a Drinfeld twist of the XXX R-matrix, and its continuum limit has soft particle production.

Motivations

Integrable deformations of the AdS/CFT

XXX spin chain and LL theory played important role in AdS/CFT.

[Kruczenski (2004)], [Kruczenski, Ryzhov, Tseytlin (2004)]

Conjecture

[Araujo, Bakhmatov, Colgain, Sakamoto, Sheikh-Jabbari, Yoshida (2018)], [van Tongeren (2016)], [Meier, van Tongeren (2023)]

 $\begin{array}{ccc} \text{Jordanian deformation} & \Longleftrightarrow & \text{Drinfeld twist} \\ \text{of } \text{AdS}_5{\times}\text{S}^5 & & \text{of XXX spin chain} \\ \end{array}$

Class 5 solution precisely enters in the r.h.s. of the duality \rightarrow Expect the deformed LL model to enter on the l.h.s.

Non-diagonalisable transfer matrix

There is a growing interest on this topic, e.g.

- Non-hermitian integrable systems [Maity, Padmanabhan, Korepin (2025)]
- Eclectic spin chain [Ahn, Staudacher (2022)], [Nieto García, (Wyss) (2021/22/23)]
- ▶ (progress on) Bethe ansatz [Nieto García (2023)], [Borsato, García Fernández (2025)]
- Non-relativistic string theory [Fontanella, Nieto García, Ohlsson Sax (2022)]

Plan of the talk

1. Class 5 model as a Drinfeld twist

2. Continuum limit

3. Integrability via "boost operator"

4. Soft particle production

Class 5 model as a Drinfeld twist

$$R_5(u) = \begin{pmatrix} 2u+1 & a_2u & -a_2u & a_2a_3u^2 \\ 0 & 2u & 1 & -a_3u \\ 0 & 1 & 2u & a_3u \\ 0 & 0 & 0 & 2u+1 \end{pmatrix} , \qquad a_2, a_3 \quad \text{free parameters}$$

$$a_2 = a_3 = 0 \ \to \ \text{XXX}$$

 \exists a basis transformation, where effectively $a_3 = 0$. Here, we find:

$$R_5^{a_3=0}(u) = F_{21} \, R^{\text{\tiny XXX}}(u) \, F_{12}^{-1} \, , \qquad F = \mathbb{I} \otimes \mathbb{I} + \frac{a_2}{8} \sigma^+ \otimes (\mathbb{I} + \sigma^z)$$

[2-cocyle condition: $F_{12}(\Delta \otimes \mathbb{I})F = F_{23}(\mathbb{I} \otimes \Delta)F$, Δ trivial co-product]

Two-site Hamiltonian density $h_{12} = R^{-1} \frac{d}{du} R|_{u=0}$; total Hamiltonian:

$$\mathcal{H}_{5} = \sum_{j=1}^{L} h_{j,j+1} , \qquad h_{L,L+1} = h_{L,1}$$

$$h_{j,j+1} = \underbrace{2P_{j,j+1}}_{XXX} + \underbrace{\frac{a_{2} - a_{3}}{2}}_{2} \underbrace{\left(\mathbb{I}_{j} \otimes \sigma_{j+1}^{+} - \sigma_{j}^{+} \otimes \mathbb{I}_{j+1}\right)}_{XXX} + \underbrace{\frac{a_{2} + a_{3}}{2}}_{2} \underbrace{\left(\sigma_{j}^{z} \otimes \sigma_{j+1}^{+} - \sigma_{j}^{+} \otimes \sigma_{j+1}^{z}\right)}_{XXX}$$

boundary term physical deformation

Continuum limit

Follow Fradkin [Fradkin, Cambridge University Press (2013)]

Introduce SU(2) coherent states [Perelomov (1986)]

$$|\theta,\phi\rangle = e^{\frac{i}{2}\phi\,\sigma^z} e^{\frac{i}{2}\theta\,\sigma^y}\,|0\rangle \;.$$

 $\theta, \phi \rightarrow \text{ fields of 2d sigma model}, \mathcal{L}_{kin} = -\cos\theta \,\phi_t \text{ universal},$

$$S_{5} = \int dt dx \left(\mathcal{L}_{kin} + \langle \theta, \phi | \otimes \langle \theta + \delta \theta, \phi + \delta \phi | h_{12} | \theta, \phi \rangle \otimes | \theta + \delta \theta, \phi + \delta \phi \rangle \right),$$

 $\delta\phi, \delta\theta$ given by Taylor expansion

$$\delta\theta = \varepsilon\theta_x + \frac{1}{2}\varepsilon^2\theta_{xx} + \mathcal{O}(\varepsilon^3), \qquad \delta\phi = \varepsilon\phi_x + \frac{1}{2}\varepsilon^2\phi_{xx} + \mathcal{O}(\varepsilon^3).$$

 $\delta x \equiv \varepsilon$ is the *lattice spacing*. Take the continuum limit $\varepsilon \to 0$, get

$$S_5 = -\int \mathrm{d}t \mathrm{d}x \left\{ \underbrace{\cos\theta \,\phi_t + \frac{1}{2} \Big[(\theta_x)^2 + \sin^2\theta (\phi_x)^2 \Big]}_{\mathrm{LL}} + \alpha \underbrace{\frac{e^{-i\phi}}{2} \left(\theta_x - \frac{i}{2} \sin 2\theta \,\phi_x \right)}_{\mathrm{deformation}} \right\}.$$

Spacetime symmetries: Aristotelian (time + space translations) Broken on-shell anisotropic dilatation $(t \to \lambda^2 t, x \to \lambda x)$ of LL

Integrability via "boost operator"

Quantum systems. Introduce the boost operator [Tetel'man (1982)]

$$\mathcal{B}[\mathcal{H}] \equiv \sum_{n=-\infty}^{+\infty} n \, h_{n,n+1} \,,$$

and generate the higher conserved charges as $(Q_2 \equiv \mathcal{H}; Q_p \text{ range } p)$

$$Q_{r+1} \equiv [\mathcal{B}[\mathcal{H}], Q_r], \qquad [Q_p, Q_q] = 0, \quad \forall p, q$$

Evidence that: if $\exists Q_3 \rightarrow \text{integrable}$ (solid proof?)

 $\underline{\text{Classical field theories}}. \text{ similar construction works for LL } \text{[Fuchssteiner (1984)]}$ and for our deformed LL [de Leeuw, AF, Nieto Garcia (2025)]

Boost functional

$$B[H] \equiv \int_{-\infty}^{+\infty} \mathrm{d}x \, x \, \mathscr{H} \,, \qquad \to \qquad Q_{r+1} = \{B[H], Q_r\} \,.$$

B[H] is strong and hereditary symmetry

Apply [Fuchssteiner (1979)] theorem on strong + hereditary symmetries

Guarantees: if $\exists Q_3 \rightarrow \text{integrable}$

Integrability via "boost operator"

Quantum systems. Introduce the boost operator [Tetel'man (1982)]

$$\mathcal{B}[\mathcal{H}] \equiv \sum_{n=-\infty}^{+\infty} n \, h_{n,n+1} \,,$$

and generate the higher conserved charges as $(\mathcal{Q}_2 \equiv \mathcal{H}; \mathcal{Q}_p \text{ range } p)$

$$Q_{r+1} \equiv [\mathcal{B}[\mathcal{H}], Q_r], \qquad [Q_p, Q_q] = 0, \quad \forall p, q$$

Evidence that: if $\exists Q_3 \rightarrow \text{integrable}$ (solid proof?)

Classical field theories. similar construction works for LL [Fuchssteiner (1984)]

and for our deformed LL [de Leeuw, AF, Nieto Garcia (2025)]

Boost functional

for our deformed LL [de Leeuw, AF, Nieto Garcia (2023)] it functional
$$B[H] \equiv \int_{-\infty}^{+\infty} \mathrm{d}x \, x \, \mathscr{H} \,, \qquad \to \qquad Q_{r+1} = \{B[H], Q_r\} \,.$$
 It is at zero a and hereditary symmetry.

B[H] is strong and hereditary symmetry

Apply [Fuchssteiner (1979)] theorem on strong hereditary symmetries

Guarantees: if $\exists Q_3 \rightarrow \text{integrable}$

Soft particle production

Study perturbation theory + quantisation

Similarly to LL, introduce complex field

$$\eta = \frac{\sin \theta}{\sqrt{2 + 2\cos \theta}} e^{i\phi}$$

Expand in number of fields, get (up to $\mathcal{O}(\eta^5)$)

$$\mathcal{L}_{5}^{\eta} = -\alpha \eta_{x}^{*} + \underbrace{\left(i(\eta_{t}^{*}\eta - \eta^{*}\eta_{t}) - 2\eta_{x}^{*}\eta_{x}\right)}_{\text{LL}} + \frac{1}{2}\alpha \eta^{*}\left(2\eta_{x}^{*}\eta - 3\eta^{*}\eta_{x}\right) - \underbrace{\left(\left(\eta_{x}^{*}\right)^{2}\eta^{2} + (\eta^{*})^{2}\left(\eta_{x}\right)^{2}\right)}_{\text{LL}}$$

Structure: "LL + cubic potential"

Quantisation goes like for LL (quadratic part is the same).

Cubic term gives soft particle production:

$$S(k; p, p') = \frac{i\alpha k}{4|k|} \left[\delta(p)\delta(k - p') + \delta(p')\delta(k - p) \right].$$

 $\eta \to \eta \times \eta$ with one of outgoing particles with zero momentum $\eta \times \eta \to \eta$ not allowed, theory is non-unitary

• Is this incompatible with integrability? No!

Very often we heard: "no particle production for integrable theories"

Based on assumptions: i) 1+1 d $\boldsymbol{\checkmark};$ ii) Lorentz invariance $\boldsymbol{\varkappa};$ iii) massive particles $\boldsymbol{\varkappa}$

- Particle production is justifiable from the quantum spin chain: SU(2) symmetry is broken, $\sum \mathfrak{s}_n^+$ only unbroken generator.
- \rightarrow Number of excitations, counted by $\sum \mathfrak{s}_n^z$, not conserved!
- \bullet Similar to QED: \exists potential V that does not die off at $|t| \to \infty$

This creates a cloud of soft particles. Faddeev and Kulish (FK): "move" V inside the states. States are dressed by a cloud of soft particles

$$|\Psi\rangle_{\rm FK} \equiv T e^{-i\int {\rm d}t\, V} \, |\Psi\rangle_{\rm I}$$

For us, V is the cubic term. Equivalently, the FK transformation is the continuum limit of the Drinfeld twist.

Conclusions

Constructed a: i) non-unitary, ii) integrable deformation of LL theory, iii) with soft particle production

- ▶ Deformed Lax pair?
- ▶ Classify integrable LL deformations via boost functional \rightarrow Only continuum limits of Classes 5 & 6? Is there more?
- ▶ its role in Jordanian deformations of the AdS/CFT?
- ▶ deformed solitons?
- ▶ physical relevance of these soft particles? e.g. for gravitons in flat spacetime, emergence of asymptotic BMS supertranslations

Thank you!