

RG flows between Rational CFTs

Non-invertible symmetries and integrability

Federico Ambrosino

[DESY & Perimeter Institute]

 $11^{\rm th}$ Bologna Workshop on Conformal Field Theory and Integrable Models September $4^{\rm th}$ 2025

Based on [2501.07511] with Stefano Negro

+ WIP with Tomáš Procházka

A symmetry revival

Lot of activity: plethora of generalization

p-form, higher-groups, non-invertible, emanent, mixed anomalies, gauging, SymTFT, higher-category ...

[Frolich, Fuchs, Runkel, Schwiegert, Tachikawa, Bhardwaj, Chang, Lin, Shao, Wang, Yin, Copetti, Cordova, Komatsu,

Schäfer-Nameki, Bottini, Tiwari, Cordova, Dumitrescu, Intriligator, Benini, Antinucci] $+.....\infty$

Crucial observation:

Symmetry = <mark>Topological Operator</mark>

Symmetries strike back

Symmetry: most important guiding principle in physics

More symmetries = More non-perturbative data

A lot new information: e.g.

- · Constraints on RG flows and S-Matrix:
 - → Phases of 2d Adjoint QCD, Modified crossing...

[Copetti, Cordova, Komatsu][Komargodski, Ohmori Seifnashri, Roumpedakis][Tanaka, Nakayama]

- Organizing principles
 - → Particle-soliton degeneracy[Cordova, García-Sepúlveda, Holfester]
- Explain experimental data
 - ightarrow Pion decay $\pi^0
 ightarrow \gamma \gamma$, axion coupling [Cordova, Shao...]

Today's talk

What can we learn by having the full symmetry data?

Usually hard in QFT: need <u>all</u> top. ops. , fusion, anomalies...

Rational 2d CFT: we know all topological defects

Today's talk

What can we learn by having the full symmetry data?

Usually hard in QFT: need <u>all</u> top. ops. , fusion, anomalies...

Rational 2d CFT: we know <u>all</u> topological defects

This Talk:

- Predict new RG flows
 - $ightarrow ext{Virasoro[FA, Negro][Tanaka, Nakayama]} \ \& \ \mathcal{W} \ ext{algebra} \ ext{[FA, Procházka]}$
 - → Putative NLIE description [FA, S. Negro]

Next talk:

- construction $\underline{\text{new}}$ commuting $\underline{\text{non-local}}$ conserved charges \leftrightarrow $\underline{\text{Perturbed}}$ Verlinde lines [Runkel] [Ambrosino, Runkel, Watts]
 - → Novel criterion for integrability?

Virasoro Minimal Models RG flows

A primer on Virasoro Minimal models

$\mathcal{M}(p,q)$: Rational 2D CFT, A-series

- Central charge: $c = 1 \frac{6(p-q)^2}{pq}$ Unitary iff q = p + 1
- $\frac{(p-1)(q-1)}{2}$ primaries $\phi_{(r,s)} = \phi_{(p-r,q-s)}$
- · weigths $h_{(r,s)}$ and C_{rs}^t all known
- Fusion Category: $\phi_{
 ho}\otimes\phi_{\sigma}=\sum_{\delta}\mathcal{N}_{
 ho\sigma}^{\delta}\,\phi_{\delta}$

A primer on Virasoro Minimal models

$\mathcal{M}(p,q)$: Rational 2D CFT, A-series

- Central charge: $c = 1 \frac{6(p-q)^2}{pq}$ Unitary iff q = p + 1
- $\frac{(p-1)(q-1)}{2}$ primaries $\phi_{(r,s)} = \phi_{(p-r,q-s)}$
- weigths $h_{(r,s)}$ and C_{rs}^t all known
- Fusion Category: $\phi_{
 ho}\otimes\phi_{\sigma}=\sum_{\delta}\mathcal{N}_{
 ho\sigma}^{\delta}\,\phi_{\delta}$

Topological lines = Verlinde Lines
$$\{\mathcal{L}_{\rho}\} \stackrel{\text{1 to 1}}{\Longleftrightarrow} \{\phi_{\rho}\}$$

$$\mathcal{L}_{
ho} imes \mathcal{L}_{\sigma} = \sum_{arsigma} \mathcal{N}_{
ho\sigma}^{\delta} \, \mathcal{L}_{\delta}$$

$$\mathcal{L}_{\rho} \underbrace{\dot{\phi}_{\sigma}} = \begin{bmatrix} S_{\rho\sigma} \\ S_{0\sigma} \end{bmatrix} \quad \dot{\phi}_{\sigma}$$

Example: the Ising model

2D Ising CFT $\mathcal{M}(3,4)$

$$c = \frac{1}{2}, \qquad \text{Primaries}: \ 1_{0,0}, \ \epsilon_{\frac{1}{2},\frac{1}{2}}, \sigma_{\frac{1}{16},\frac{1}{16}}, \qquad \text{TLD}: \ \mathbf{1}, \ \ \eta, \ \ \mathcal{N}$$
 Fusion Algebra TY₂:
$$\eta^2 = \mathbf{1}, \quad \mathcal{N} \times \eta = \mathcal{N}, \quad \mathcal{N}^2 = \mathbf{1} + \eta$$

$$\eta \longleftrightarrow \mathbb{Z}_2 \qquad \mathcal{N} \longleftrightarrow \text{KW duality defect}$$

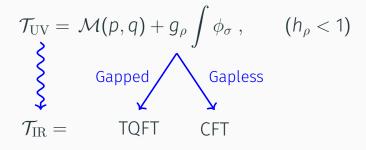
Duality in QFT $KW : Ising_T \longleftrightarrow Ising_{T-1}$

 $\underline{\mathsf{Symmetry}} \; \mathsf{in} \; \mathsf{CFT} \qquad \mathsf{KW} : \mathsf{Ising}_{\mathcal{T}_{\mathcal{C}}} \bigcirc$

TDL **honest** symmetries of CFT

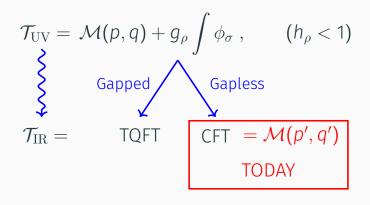
Derfomation by primary field

Relevant deformation of minimal models



Derfomation by primary field

Relevant deformation of minimal models



Derfomation by primary field

Relevant deformation of minimal models

c-theorem with:
$$c_{\rm eff} = 1 - \frac{6}{pq}$$
 (\mathcal{PT} -sym) [Ravanini]

Invariants under RG flows

When:
$$[\mathcal{L}_{\sigma}, \phi_{\rho}] | \Phi \rangle = 0 \Leftrightarrow \frac{\mathcal{L}_{\sigma}}{\phi_{\rho}} = \frac{\mathcal{L}_{\sigma}}{\phi_{\rho}}$$

Invariants under RG flows

Then: preserved symmetry along flow &

[Chang, Lin, Shao, Wang, Yin] [Nakayama, Tanaka]

Quantum dimension =
$$\langle 0 | \mathcal{L}_{\sigma} | 0 \rangle = d_{\rho} = \mathcal{L}_{\sigma}$$

Invariants under RG flows

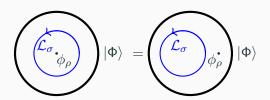
When:
$$[\mathcal{L}_{\sigma},\phi_{
ho}]\ket{\Phi}=0\Leftrightarrow \frac{\mathcal{L}_{\sigma}}{\phi_{
ho}}=\frac{\mathcal{L}_{\sigma}}{\Phi_{
ho}}$$

Then: preserved symmetry along flow &

[Chang, Lin, Shao, Wang, Yin] [Nakayama, Tanaka]

Quantum dimension =
$$\langle 0 | \mathcal{L}_{\sigma} | 0 \rangle = d_{\rho} = \mathcal{L}_{\sigma}$$

RG invariant!



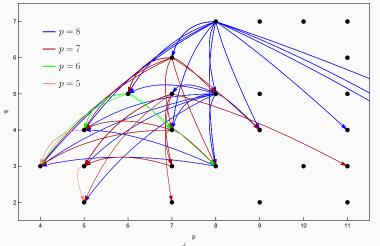
Impose anomaly matching

Strategy: Fix
$$T_{UV} = \mathcal{M}(p,q)$$

- 1. For any relevant def. compute all RG invariants
- 2. Generate all $\mathcal{M}(p',q')$ with $c_{\mathrm{eff}}^{\mathrm{IR}} < c_{\mathrm{eff}}^{\mathrm{UV}}$
- 3. Select putative $\mathcal{T}_{\rm IR}$ fullfliing all anomalies

Produces flows:

$$\mathcal{M}(p,q) \xrightarrow{\phi_{(r,s)}} \mathcal{M}(p',q')$$



Main series: $\mathcal{M}(kp+l,q) \xrightarrow{\phi_{(1,2k+1)}} \mathcal{M}(kp-l,q)$ [Nakayama, Tanaka]

New flows

Main series: $\mathcal{M}(kp+l,q) \xrightarrow{\phi_{(1,2k+1)}} \mathcal{M}(kp-l,q)$ [Nakayama, Tanaka] Integrable flows:

- k, l=1: $\phi_{(1,3)}$ [Fendley, Saleur, Al. Zamolodchikov][Al. Zamolodchikov]
- k=1/2, k=2: $\phi_{(1,2)}, \phi_{(1,5)}$ [Dorey, Dunning, Tateo]
- k=3: $\phi_{(1,7)}$ $\mathcal{M}(3,10) o \mathcal{M}(3,8)$ [Narovlansky, Sun, Tarnopolsky]
- ...

Preserve $SU(2)_{q-2}$ fusion category:

$$\{\mathcal{L}_{(1,1)} = 1, \mathcal{L}_{(2,1)}, \cdots, \mathcal{L}_{(q-1,1)}\}, \qquad \mathcal{L}_{(q-1,1)} \times \mathcal{L}_{(q-1,1)} = 1$$

$$[\mathcal{L}_{(n,1)}, \phi_{(1,2m+1)}] = 0, \qquad m = 1, \cdots, k$$

To (W) infinity and beyond!

$\mathcal{W}_{\scriptscriptstyle N}$ algebra

<u>Virasoro algebra:</u> generated by modes of spin 2 field T(z)

W_N algebra: additional currents of spin
$$s=2,\cdots,N$$

$$\{T(z),W^{(3)},\cdots,W^{(N)}\}$$
 [Zamolodchikov², Fateev, Lukyanov...]
$$T(z)W^{(s)}(u) \sim \frac{sW^{(s)}(u)}{(z-u)^2} + \frac{\partial W^{(s)}(u)}{z-u} + \cdots.$$

\mathcal{W}_{N} algebra

<u>Virasoro algebra:</u> generated by modes of spin 2 field T(z)

$$\mathcal{W}_N$$
 algebra: additional currents of spin $s=2,\cdots,N$
$$\{T(z),W^{(3)},\cdots,W^{(N)}\}$$
 [Zamolodchikov², Fateev, Lukyanov...]
$$T(z)W^{(s)}(u) \sim \frac{sW^{(s)}(u)}{(z-u)^2} + \frac{\partial W^{(s)}(u)}{z-u} + \cdots.$$

E.g.
$$\mathcal{W}^{(3)}$$
: $W(z)W(u) \sim \frac{c/3}{(z-u)^6} + \frac{2T(u)}{(z-u)^4} + \frac{\partial T(u)}{(z-u)^3} + \frac{1}{(z-u)^2} \left(\frac{3}{10}\partial^2 T(u) + \frac{32}{22+5c}\Lambda(u)\right) + \cdots$

\mathcal{W}_N Minimal models

Also W_N admit minimal truncations:

$$\mathcal{W}_N$$
 minimal models: $\mathcal{W}_N(p,q)$

- Rational CFT: $c_{p,q}^{(N)} = (N-1) \left[1 \frac{N(N+1)(p-q)^2}{pq} \right]$
- Unitary iff $p q = \pm 1$
- Primaries: pairs (A_N, A_N) reps / Identifications:

\mathcal{W}_N Minimal models

Also W_N admit minimal truncations:

$$W_N$$
 minimal models: $W_N(p,q)$

- Rational CFT: $c_{p,q}^{(N)} = (N-1) \left[1 \frac{N(N+1)(p-q)^2}{pq} \right]$
- Unitary iff $p q = \pm 1$
- Primaries: pairs (A_N, A_N) reps / Identifications: E.g. for $\mathcal{W}_3(4,5)$ (simplest)

\mathcal{W}_N Minimal models

Also W_N admit minimal truncations:

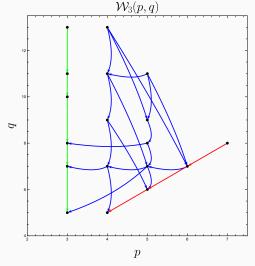
 \mathcal{W}_N minimal models: $\mathcal{W}_N(p,q)$

- Rational CFT: $c_{p,q}^{(N)} = (N-1)\left[1 \frac{N(N+1)(p-q)^2}{pq}\right]$
- Unitary iff $p q = \pm 1$
- Primaries: pairs (A_N, A_N) reps / Identifications:

Can we conjecture flows?

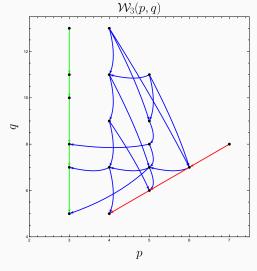
YES! Using non-invertible sym [WIP with Prochazka & Negro]

A quick preview: example for \mathcal{W}_3



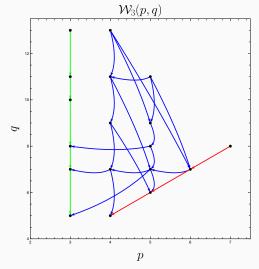
- o Unitary series: [Poghossian, Poghosyan] $\mathcal{W}_3(q+1,q) \to \mathcal{W}_3(q,q-1)$ Triggered by $(\cdot, \boxplus) \sim \phi_{(1,3)}$
- ∘ Extend to new ∞ families: $\mathcal{W}_3(kq+l,q) \rightarrow \mathcal{W}_3(kq-l,q)$ Def. $(\cdot, \stackrel{\square}{\coprod}) \sim \phi_{(1,5)} \cdots$
- Commutes with $SU(N)_{q-N}$ $\# = \binom{q-1}{q-N}$: $(\star \star \star, \cdot)$

A quick preview: example for \mathcal{W}_3



- o Unitary series: [Poghossian, Poghosyan] $\mathcal{W}_3(q+1,q) \to \mathcal{W}_3(q,q-1)$ Triggered by $(\cdot, \boxplus) \sim \phi_{(1,3)}$
- ∘ Extend to new ∞ families: $\mathcal{W}_3(kq+l,q) \to \mathcal{W}_3(kq-l,q)$ Def. $(\cdot, \frac{}{}) \sim \phi_{(1,5)} \cdots$
- o Commutes with $SU(N)_{q-N}$ $\# = \binom{q-1}{q-N}$: $(\star \star \star, \cdot)$ E.g. $SU(3)_3$: $\{(\cdot, \cdot), (\square, \cdot), (\square, \cdot), \{\square, \cdot\}, \{\square, \cdot\}, \{\square, \cdot\}, \{\square, \cdot\}\}$

A quick preview: example for \mathcal{W}_3



- o Unitary series: [Poghossian, Poghosyan] $\mathcal{W}_3(q+1,q) \to \mathcal{W}_3(q,q-1)$ Triggered by $(\cdot, \boxminus) \sim \phi_{(1,3)}$
- ∘ Extend to new ∞ families: $\mathcal{W}_3(kq+l,q) \to \mathcal{W}_3(kq-l,q)$ Def. $(\cdot, \stackrel{\square}{\coprod}) \sim \phi_{(1,5)} \cdots$
- o Commutes with $SU(N)_{q-N}$ $\# = \binom{q-1}{q-N}$: $(\star \star \star, \cdot)$ E.g. $SU(3)_3$: $\{(\cdot, \cdot), (\square, \cdot), (\square, \cdot), \{\square, \cdot\}, \{\square, \cdot\}, \{\square, \cdot\}, \{\square, \cdot\}\}$

Generalizes to \mathcal{W}_{N} !

New questions

We found:

- · New flows
- Putative non-perturbative description

What is special about flows with $\phi_{(1,r)}$?

Remember: r = 2, 3, 5 are integrable: red. of BD and SG

New questions

We found:

- · New flows
- Putative non-perturbative description

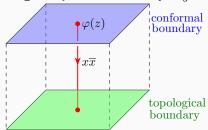
What is special about flows with $\phi_{(1,r)}$?

Remember: r=2,3,5 are integrable: red. of BD and SG We found: [Ambrosino, Runkel, Watts]

Non-top. defects = Non-local conserved charges

Sym TFT for 2d RCFT

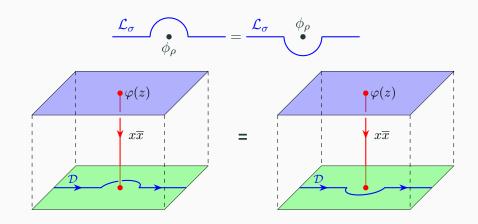
 TQFT_{d+1} encoding all symmetries of QFT_d



- · Topological ops in QFT: Neumann @ top boundary
- Non topological: Dirichlet boundary conditions

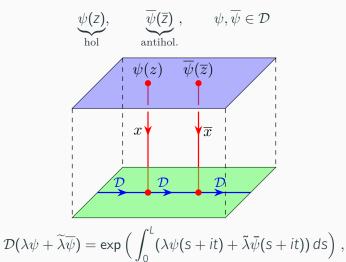
All lines = topological anyons of 3D TFT

Example: commutation condition



Perturbed defect operators

Perturb a topological defect \mathcal{D} by (chiral) defect operators:



s coordinate along defect, t position of defect

Commuting defects and where to find them

Hamiltonian of perturbed CFT: $H(\mu) = H_0 + H_{pert}(\mu)$

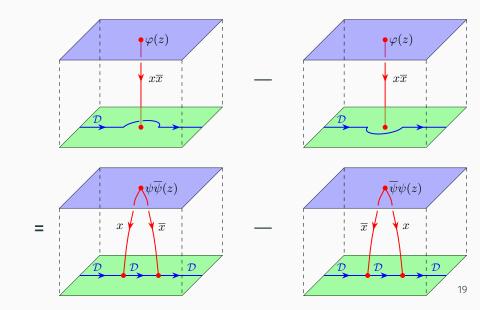
$$H_0 = \frac{2\pi}{L} \left(L_0 + \overline{L}_0 - \frac{c}{12} \right) , \quad H_{\mathrm{pert}}(\mu) = 2i\mu \int_0^L \varphi(s) ds .$$

For \mathcal{D} topological in H_0 , we want:

$$[H(\mu), \mathcal{D}(\lambda \psi + \overline{\lambda \psi})] = 0, \qquad \varphi \sim \psi \overline{\psi}$$

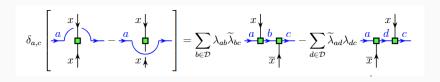
Non topological but rigid translation-invariant

Condition for translation-invariant



Conditions

$$\psi = \sum_{a,b \in \mathcal{D}} \lambda_{ab} \xrightarrow{a} \xrightarrow{b} \overline{\psi} = \sum_{a,b \in \mathcal{D}} \widetilde{\lambda}_{ab} \xrightarrow{a} \xrightarrow{b} \overline{\chi}$$



Conditions

$$\psi = \sum_{a,b \in \mathcal{D}} \lambda_{ab} \xrightarrow{a} \xrightarrow{b} \overline{\psi} = \sum_{a,b \in \mathcal{D}} \widetilde{\lambda}_{ab} \xrightarrow{a} \xrightarrow{b} \overline{\chi}$$

$$\delta_{a,c} \left[\begin{array}{c} x \\ x \\ x \\ \end{array} \right] = \sum_{b \in \mathcal{D}} \lambda_{ab} \widetilde{\lambda}_{bc} \xrightarrow{a \atop \overline{x}} \begin{array}{c} x \\ b \\ \overline{x} \\ \end{array} \right] - \sum_{d \in \mathcal{D}} \widetilde{\lambda}_{ad} \lambda_{dc} \xrightarrow{a \atop \overline{x}} \begin{array}{c} x \\ d \\ \overline{x} \\ \end{array}$$

$$\delta_{ac} \left(\mathbf{R}^{(ax)b} - \frac{1}{\mathbf{R}^{(ax)b}} \right) \mathbf{F}_{1b}^{(axx)a} = \delta_{b \in \mathcal{D}} \lambda_{ab} \widetilde{\lambda}_{bc} - \sum_{d \in \mathcal{D}} \mathbf{F}_{db}^{(xax)c} \widetilde{\lambda}_{ad} \lambda_{dc}$$

Solutions of conditions for minimal models

$$\forall a,c\in\mathcal{D},\qquad b\in a\otimes x$$

$$\delta_{ac}\left(\mathrm{R}^{(ax)b}-\frac{1}{\mathrm{R}^{(ax)b}}\right)\mathrm{F}_{1b}^{(axx)a}=\delta_{b\in\mathcal{D}}\,\lambda_{ab}\widetilde{\lambda}_{bc}-\sum_{d\in\mathcal{D}}\mathrm{F}_{db}^{(xax)c}\,\widetilde{\lambda}_{ad}\lambda_{dc}$$
 Give condition on $\lambda,\widetilde{\lambda}$ in $\mathcal{T}(\mu)=\mathcal{M}(p,q)+\mu\int\phi$ Sols of the form $\lambda\cdot\widetilde{\lambda}=\mu$ for given p,q

Solutions in Minimal models

$\begin{array}{c} \text{Minimal} \\ \text{model } M(p,q) \end{array}$	perturbing bulk field φ	weights $h = \bar{h} \text{ of } \varphi$	topological defect solving (4)
$q \ge 3$	(1, 2)	$h_{1,2} = \frac{3}{4}t - \frac{1}{2}$	$(1,1)\oplus(1,2)$
$q \ge 4$	(1, 3)	$h_{1,3} = 2t - 1$	(1, 2)
$q \ge 6$	(1, 5)	$h_{1,5} = 6t - 2$	(1, 3)
q = 9, 10, 18	(1,7)	$h_{1,7} = 12t - 3$	(1, 5)

$$\left[\mathcal{D}(\lambda, \mu/\lambda), \mathcal{D}(\lambda', \mu/\lambda')\right] = 0, \qquad \lambda \lambda'$$

Infinitely many non-local conserved charges!

(1,7) deformation has no local conserved charges [BLZ]

Solutions in Minimal models

$\begin{array}{c} \text{Minimal} \\ \text{model } M(p,q) \end{array}$	perturbing bulk field φ	weights $h = \bar{h} \text{ of } \varphi$	topological defect solving (4)
$q \ge 3$	(1, 2)	$h_{1,2} = \frac{3}{4}t - \frac{1}{2}$	$(1,1)\oplus(1,2)$
$q \ge 4$	(1, 3)	$h_{1,3} = 2t - 1$	(1, 2)
$q \ge 6$	(1, 5)	$h_{1,5} = 6t - 2$	(1, 3)
q = 9, 10, 18	(1,7)	$h_{1,7} = 12t - 3$	(1, 5)

$$\left[\mathcal{D}(\lambda, \mu/\lambda), \mathcal{D}(\lambda', \mu/\lambda')\right] = 0, \qquad \lambda \lambda'$$

Infinitely many non-local conserved charges!

(1,7) deformation has no local conserved charges [BLZ] But NEW non-local conserved charges!!

Solutions in Minimal models

$\begin{array}{c} \text{Minimal} \\ \text{model } M(p,q) \end{array}$	perturbing bulk field φ	weights $h = \bar{h} \text{ of } \varphi$	topological defect solving (4)
$q \ge 3$	(1, 2)	$h_{1,2} = \frac{3}{4}t - \frac{1}{2}$	$(1,1)\oplus(1,2)$
$q \ge 4$	(1, 3)	$h_{1,3} = 2t - 1$	(1, 2)
$q \ge 6$	(1, 5)	$h_{1,5} = 6t - 2$	(1, 3)
q = 9, 10, 18	(1,7)	$h_{1,7} = 12t - 3$	(1, 5)

$$\left[\mathcal{D}(\lambda, \mu/\lambda), \mathcal{D}(\lambda', \mu/\lambda')\right] = 0, \qquad \lambda \lambda'$$

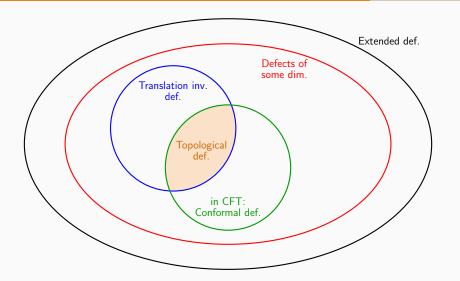
Infinitely many non-local conserved charges!

(1,7) deformation has no local conserved charges [BLZ]

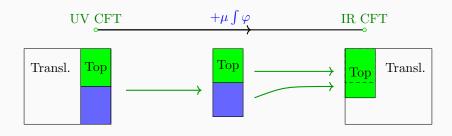
But NEW non-local conserved charges!!

Generalizes to any (1,r)

General picture



General picture



Non perturbative description via TBA-like equations

NLIE description

Integrable flows admit NLIE/TBA encoding energy levels non-perturbatively[Zamoldchikov, Dorey, Dunning, Tateo]. Ground state

$$f_{s}(r) = \sum_{\sigma=\pm} \frac{3ir\sigma}{2\pi^{2}} \int_{\mathcal{C}_{s}^{\sigma}} d\theta \left[e^{-\theta} L_{L}^{\sigma}(\theta) - e^{\theta} L_{R}^{-\sigma}(\theta) \right], \qquad f_{s}(r) = 6RE_{s}(R)/\pi$$

$$L_{L}^{\pm}(\theta) = \log \left[1 + \exp\left(\pm f_{L}(\theta)\right) \right]$$

$$f_{R/L}(\theta) = i\alpha' - i\frac{r}{2} e^{\pm\theta} \mp \sum_{\sigma=\pm} \sigma \int_{\mathcal{C}_{\sigma}^{\sigma}} d\theta' \left[\phi(\theta - \theta') L_{R}^{\mp\sigma}(\theta') + \chi(\theta - \theta') L_{L}^{\pm\sigma}(\theta') \right]$$

NLIE description

Integrable flows admit NLIE/TBA encoding energy levels non-perturbatively[Zamoldchikov, Dorey, Dunning, Tateo]. Ground state

$$f_{\rm S}(r) = \sum_{\sigma=\pm} \frac{3Ir\sigma}{2\pi^2} \int_{\mathcal{C}_{\rm S}^{\sigma}} d\theta \left[e^{-\theta} L_{\rm L}^{\sigma}(\theta) - e^{\theta} L_{\rm R}^{-\sigma}(\theta) \right], \qquad f_{\rm S}(r) = 6RE_{\rm S}(R)/\pi$$

$$L_{\rm L}^{\pm}(\theta) = \log \left[1 + \exp\left(\pm f_{\rm L}(\theta)\right) \right]$$

$$f_{\rm R/L}(\theta) = i\alpha' - i\frac{r}{2}e^{\pm\theta} \mp \sum_{\sigma=\pm} \sigma \int_{\mathcal{C}_{\rm S}^{\sigma}} d\theta' \left[\phi(\theta - \theta') L_{\rm R}^{\mp\sigma}(\theta') + \chi(\theta - \theta') L_{\rm L}^{\pm\sigma}(\theta') \right]$$

Assume that structure persist: Can we find $\chi(\omega)$, $\phi(\omega)$?

Bootstrapping kernels

Assume kernels $\chi(\omega), \phi(\omega)$:

- Trigonometric form (analogy with integrable case)
- Decay at $\pm \infty \oplus$ Analytic properties (poles at $\pm i$ & non-van. @ 0)
- Scaling limits $f_{\rm s}(r o 0)\propto {\rm c_{eff}^{UV}}$ & $f_{\rm s}(r o \infty)\propto {\rm c_{eff}^{IR}}$

Bootstrapping kernels

Assume kernels $\chi(\omega), \phi(\omega)$:

- Trigonometric form (analogy with integrable case)
- Decay at $\pm \infty \oplus$ Analytic properties (poles at $\pm i$ & non-van. @ 0)
- Scaling limits $f_{\rm s}(r o 0)\propto c_{
 m eff}^{
 m UV}$ & $f_{\rm s}(r o \infty)\propto c_{
 m eff}^{
 m IR}$

\Rightarrow 2-parameter family κ, ξ

$$\begin{split} \phi(\theta) &= -\int\limits_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\theta\omega} \frac{\sinh\left(\frac{1}{\kappa}\pi\omega\right) \cosh\left(\frac{2\xi-\kappa}{2\kappa}\pi\omega\right)}{\sinh\left(\frac{\xi-1}{\kappa}\pi\omega\right) \cosh\left(\frac{1}{2}\pi\omega\right)} \;, \\ \chi(\theta) &= -\int\limits_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\theta\omega} \frac{\sinh\left(\frac{1}{\kappa}\pi\omega\right) \cosh\left(\frac{\kappa-2}{2\kappa}\pi\omega\right)}{\sinh\left(\frac{\xi-1}{\kappa}\pi\omega\right) \cosh\left(\frac{1}{2}\pi\omega\right)} \;, \end{split}$$

Bootstrapping the kernels

$$\begin{split} \phi(\theta) &= -\int_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\theta\omega} \frac{\sinh\left(\frac{1}{\kappa}\pi\omega\right) \cosh\left(\frac{2\xi-\kappa}{2\kappa}\pi\omega\right)}{\sinh\left(\frac{\xi-1}{\kappa}\pi\omega\right) \cosh\left(\frac{1}{2}\pi\omega\right)} \;, \\ \chi(\theta) &= -\int_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\theta\omega} \frac{\sinh\left(\frac{1}{\kappa}\pi\omega\right) \cosh\left(\frac{\kappa-2}{2\kappa}\pi\omega\right)}{\sinh\left(\frac{\xi-1}{\kappa}\pi\omega\right) \cosh\left(\frac{1}{2}\pi\omega\right)} \;, \end{split}$$

 ξ, κ encode central charges:

$$C_{\text{eff}}^{\text{UV}}(p,q) = 1 - 3\left(\frac{\alpha'}{\pi}\right)^2 \frac{(\xi-1)^2}{\xi(\xi+1)}$$

$$C_{\text{eff}}^{\text{IR}}(p',q') = 1 - 3\left(\frac{\alpha'}{\pi}\right)^2 \frac{\xi-1}{\xi}$$

$$h_{(r,s)} = 1 - \frac{1}{(1 \text{ or } 2)} \frac{\kappa}{\xi+1}$$

Obey Diofantine quantization conditions

Bootstrapping the kernels

$$\phi(\theta) = -\int_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\theta\omega} \frac{\sinh\left(\frac{1}{\kappa}\pi\omega\right) \cosh\left(\frac{2\xi-\kappa}{2\kappa}\pi\omega\right)}{\sinh\left(\frac{\xi-1}{\kappa}\pi\omega\right) \cosh\left(\frac{1}{2}\pi\omega\right)} ,$$

$$\chi(\theta) = -\int_{\mathbb{R}} \frac{d\omega}{2\pi} e^{i\theta\omega} \frac{\sinh\left(\frac{1}{\kappa}\pi\omega\right) \cosh\left(\frac{\kappa-2}{2\kappa}\pi\omega\right)}{\sinh\left(\frac{\xi-1}{\kappa}\pi\omega\right) \cosh\left(\frac{1}{2}\pi\omega\right)} ,$$

 ξ, κ encode central charges:

$$c_{\text{eff}}^{\text{UV}}(p,q) = 1 - 3\left(\frac{\alpha'}{\pi}\right)^{2} \frac{(\xi-1)^{2}}{\xi(\xi+1)}$$

$$c_{\text{eff}}^{\text{IR}}(p',q') = 1 - 3\left(\frac{\alpha'}{\pi}\right)^{2} \frac{\xi-1}{\xi}$$

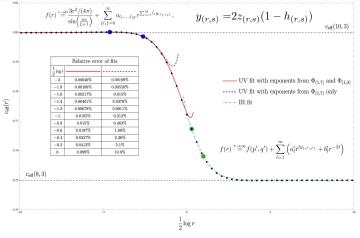
$$h_{(r,s)} = 1 - \frac{1}{(10r^{2})} \frac{\kappa}{\xi+1}$$

Obey Diofantine quantization conditions

Varying quantized ξ, κ recovers RG flows!

Example: $\mathcal{M}(3, 10) \rightarrow \mathcal{M}(3, 8)$

Recent interest in this flow [Klebanov et al] [Miro' et al] Solutions of our NLIE match UV and IR expansion



Concluding remarks

News from Minimal Models!! BPZ, 1984

- New flows predicted by non-invertible symmetries
 - ightarrow From Virasoro to \mathcal{W}_{N} and beyond!

- \rightarrow Truncations of $\mathcal{W}_{1+\infty}$: $Y_{N,0,0} \cap Y_{0,p,q}$, compact irrational CFT [Antunes, Behan, Rong], etc dots...
- → Mapping the space of RCFTs
- Putative new NLIF
- Virasoro ADE classification[Cappelli,Itzykson,Zuber][Nakayama,Tanaka]
 - \rightarrow Modular invariant classification for \mathcal{W}_{N} ?
- We need to go beyond the topological defect framework!
- From 2d to 4d and back
- Novel integrable flows? New non-local charges

Thanks for your attention!