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Painlevé equations

• In the 19th century special functions were introduced: Airy, Bessel,
Hypergeometric functions. They are all solutions of linear second order
ODEs with at most poles in the Riemann sphere.

• At the end of the 19th century elliptic functions were defined. They satisfy
nonlinear ODEs

• Painlevé aimed to define new special functions as solutions of nonlinear
ODEs. In general, solutions of nonlinear ODES have movable singular points,
i.e. singular points whose position and type depend on initial conditions. For
instance elliptic functions have movable poles.

• Painlevé property is to allow, as in the case of elliptic functions, only
movable poles (no movable branch points) and fixed singular points of any
type.

• Degree one second order ODEs q̈ = F (q̇, q, s), with F rational function of
q̇, q, whose solutions q(s) satisfy Painlevé property have been classified by
Painlevé and Gambier in 1900-1910: six types of Painlevé equations
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Plan of the talk: explore connections with gravity and SYM

• By using a Lax pair presentation, associate to a Painlevé equation a
second order differential equation

• The ODE obtained in this way appears to coincide with the ODE appearing
when the metric of some massive object, like a black hole (BH), is subjected
to the small perturbation.

• The same ODEs realise quantisations of Seiberg-Witten differentials for
N = 2 SYM in the Nekrasov-Shatashvili background.

•We will study and construct solutions of these ODEs and their connection
coefficients.

•We will discuss Painlevé III3 and VI.
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Painlevé III3 equation

One way to introduce Painlevé equations is through a Lax pair. For Painlevé
III3 the Lax pair is

(∂z − Az )ψ(s, z) = 0 , (∂s − As)ψ(s, z) = 0

Az =

( pq
z 1− s

zq
1
z −

q
z2 − pq

z

)
, As =

(
0 1

q
q
sz 0

)
.

q is a function of s, q(s)

q̇ =
dq
ds
, pq =

1
2
−

sq̇
2q

From the equality ∂z∂sψ(s, z) = ∂s∂zψ(s, z), which means
[∂z − Az , ∂s − As] = 0 ,

one gets for q(s) the constraint

q̈ =
q̇2

q
−

q̇
s

+
2q2

s2
−

2
s
,

which is Painlevé III3 equation. Symmetry: q → s/q.
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Going on a singularity

• Define t , time, from s = (t/8)4. Around a movable double zero t = t̄

q(t) =
t̄2

256
(t − t̄)2 +

3t̄
256

(t − t̄)3 + κ(t − t̄)4 + O(t − t̄)5

t̄, κ determined by initial conditions
• Consider the equation (∂z − Az)ψ(s, z) = 0 in the limit t → t̄ . For the two

components ψ(s, z) =

(
ψ1(s, z)
ψ2(s, z)

)
we find in the variable y = ln z the limiting

equation
d2ψi

dy2
=
(

2e2θ cosh y + P2
)
ψi (y) , t̄ = 8eθ , P2 = −

35
64

+ 48κ ,

which is the Modified Mathieu Equation.
M. Bershtein, P. Gavrylenko, A. Grassi, (2022)

Remark: two irregular singular points at y = ±∞.
• It is the quantisation of Seiberg-Witten differential of N = 2 SYM with no
matter in Nekrasov-Shatashvili background.
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Basis of solutions

A basis of solutions is (U0,V0), where

V0(y) '
1
√

2
exp

(
−
θ

2
+

y
4

)
exp

(
−2eθ−

y
2

)
, y → −∞

and U0(y) = V0(−y).

Another basis is given by Floquet solutions ψ±(y + 2πi) = e±2πikψ±(y).
k is the Floquet index and ψ±(y) = ψ∓(−y).

They diverge at infinity:

• when y → −∞

ψ±(y) ' e∓
ϕ
2 e

y
4 exp

(
2eθe−

y
2

)
• when y → +∞

ψ±(y) ' e±
ϕ
2 e−

y
4 exp

(
2eθe

y
2

)
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Connecting the solutions
The connection between U0,V0 and ψ± is D. Fioravanti, M.R. ’24

U0(y) =

√
2e
θ
2

W [ψ+, ψ−]

[
e−

ϕ
2 ψ+(y ; k)− e

ϕ
2 ψ−(y ; k)

]
,

V0(y) =

√
2e
θ
2

W [ψ+, ψ−]

[
e−

ϕ
2 ψ−(y ; k)− e

ϕ
2 ψ+(y ; k)

]
Connection depends on the Wronskian W [ψ+, ψ−] = −4eθ sin 2πk and on

ϕ =

∫ 0

−∞
dy
(

Π+(y) + eθe−
y
2 −

1
4

)
+

∫ +∞

0
dy
(

Π+(y)− eθe
y
2 +

1
4

)
, Π+ =

d
dy

lnψ+(y)

the phase acquired by ψ+ in going from y = −∞ to y = +∞.

Π+(y) satisfies the Riccati equation

Π+(y)2 +
d
dy

Π+(y) = 2e2θ cosh y + P2

We want to compute k, ϕ when θ → −∞. Easy for
k =

∫ 2πi
0

dy
2πi Π+(y) = P − e4θ

P(4P2−1)
+ ..., but ϕ has problem of conflicting y → +∞

and θ → −∞ limits.
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Computing the solutions and the connection coefficients
•Write ϕ = ϕ< + ϕ>, with

ϕ< =

∫ 0

−∞
dy
(

Π+(y) + eθe−
y
2 −

1
4

)
, ϕ> =

∫ +∞

0
dy
(

Π+(y)− eθe
y
2 +

1
4

)

• Concentrating on ϕ>, rewrite it in terms of Π>(y) = Π+(y − 2θ) as

ϕ> =

∫ +∞

2θ
dy
(

Π>(y)− e
y
2 +

1
4

)
.

• Solve the Riccati equation satisfied by Π>(y) in terms of θ, k

Π>(y)2 +
d
dy

Π>(y) = ey + P2(k) + e4θe−y
,

by expanding P2(k) =
∑+∞

n=0 p(n)
2 (k)e4nθ and Π>(y) =

∑+∞
n=0 Π

(n)
> (y)e4nθ when y > 2θ.

• One finds a system of first order ODEs

Π
(0)
> (y)2 +

d
dy

Π
(0)
> (y) = ey + k2

, 2Π
(0)
> (y)Π

(1)
> (y) +

d
dy

Π
(1)
> (y) = e−y +

2
4k2 − 1

n∑
m=0

Π
(m)
> (y)Π

(n−m)
> (y) +

d
dy

Π
(n)
> (y ; k) = p(n)

2 (k)
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Solutions

The first ODE has solution Π
(0)
> (y) = d

dy ln J2k (2ie
y
2 ). For n ≥ 1 explicit solution for

n = 1, 2 brings to conjecture

Π
(n)
> (y) =

d
dy

[
P(n)

0 (e−y ) +
n∑

m=1

P(n)
m (e−y )

dm−1

dym−1
Π

(0)
> (y ; k)

]
,

with P(n)
m (e−y ) degree n polynomials. E.g.

P(1)
0 (x) = x/(1− 4k2), P(1)

1 (x) = 2x/(1− 4k2).

The wave function ψ>(y) = exp
∫ y Π>(y ′)dy ′ is then reconstructed for y > 2θ and

this gives ψ+(y) = ψ>(y + 2θ) for y > 0.
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Passing to ϕ<:
ϕ< =

∫ 0

−∞
dy
(

Π+(y) + eθe−
y
2 −

1
4

)
We define Π<(y) = Π+(y + 2θ)

ϕ< =

∫ −2θ

−∞
dy
(

Π<(y) + eθe−
y
2 −

1
4

)
which satisfies

Π<(y ; θ,P)2 +
d
dy

Π<(y ; θ,P) = e−y + P2(k) + e4θey
.

Symmetry Π<(y ; θ, k) = −Π>(−y ; θ,−k) holds. Then, one finds ψ<(y) for y < −2θ

and this gives ψ+(y) = ψ<(y − 2θ) for y < 0. The relation ψ−(y) = ψ+(−y) gives
the other Floquet.

(Partial) conclusions
•We reconstruct the wave function as a series of powers of e4θ.
•We express the connection coefficient ϕ = ϕ> + ϕ< as a series of powers of
e4θ:

ϕ(θ, k) = −4kθ + ln
Γ(1 + 2k)

Γ(1− 2k)
+

8k
(1− 4k2)2

e4θ + O(e8θ)

• Claim: ϕ = AD/~, k = a/~ (periods of N = 2 SYM without matter in the
Nekrasov-Shatashvili background).
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Painlevé VI
If one goes to a movable pole of Painlevé VI equation one finds that the
second Lax operator in z = ey becomes the Heun Equation d2

dy2 ψ(y) = V (y)ψ(y),

V (y) = −
1

4
(

eθ − 4e
θ
2 cosh y + 4

)2

[
−16

(
eθ + 4

)
P2 − 16eθ + 24eθ (q1q2 + q3q4)−

−e2θ
(

q2
1 + q2

2 + q2
3 + q2

4

)
+

+4e
θ
2 +y

(
eθ

2
+ eθq2

1 −
(

eθ + 8
)

q2q1 + eθq2
2 − eθq3q4 + 8P2 + 2

)
+

+4e
θ
2−y

(
eθ

2
+ eθq2

3 −
(

eθ + 8
)

q4q3+

+eθq2
4 − eθq1q2 + 8P2 + 2

)
− 4 (q1 − q2)2 eθ+2y − 4 (q3 − q4)2 eθ−2y

]
The Heun equation has four regular singular points at y = ±∞,±( θ2 − ln 2).
• It is related to radial part of perturbations of the metric of Kerr-(Anti)-de
Sitter BH H. Suzuki, E. Takasugi and H. Umetsu (1998).
• It is the quantisation of Seiberg-Witten differential of N = 2 SYM with
Nf = 4 in Nekrasov-Shatashvili background.
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Expansion for Π+ = d/dy lnψ+(y) (Floquet +) when θ → −∞ and |y| < ln 2− θ/2.
• Right region 0 < y < ln 2− θ/2

Define Π>, Π>
(
y + θ

2

)
= Π+(y) and expand Π>(y) =

∑∞
n=0 Π

(n)
> (y)enθ. By solving a

system of first order (Riccati) ODEs, the proposed expressions are

Π
(0)
> (y) =

d
dy

ln

[
(ey − 2)

1−q1−q2
2 eky

2F1

(
1
2

+ k − q1,
1
2

+ k − q2; 1 + 2k ;
ey

2

)]
and

Π
(n)
> (y) =

d
dy

[
P(n)

0 (e−y ) +
n∑

m=1

P(n)
m (e−y )

dm−1

dym−1
Π

(0)
> (y)

]
, n ≥ 1 ,

with P(n)
m (x) polynomials of degree n:

P(1)
0 (e−y ) =

(
−

1
4

+
q3q4

1− 4k2

)
1
2

e−y
, P(1)

1 (e−y ) =

(
−

1
4

+
q3q4

1− 4k2

)(
e−y −

1
2

)
.

• Left region θ/2− ln 2 < y < 0

Define Π<, Π<
(
y − θ

2

)
= Π+(y). As in other cases

Π<(y ; k, q1, q2, q3, q4) = −Π>(−y ;−k, q3, q4, q1, q2)

Finally the symmetry ψ−(y, q1, q2, q3, q4) = ψ+(−y, q3, q4, q1, q2) gives also the
other Floquet solution.
Results to be compared with Cipriani, Di Russo, Fucito, Morales, Poghosyan, Poghossian (2025).
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The Confluent Heun Equation (CHE) and Schwarzschild BH

The CHE is the confluence limit of the Heun equation

−
d2

dy2
ψ(y) +

{
1
4

e2y (q1 − q2)2 + ey (−
1
2

+ 2q1q2 + eθq3 − 2P2) + (e2θ − 6eθq3 + 4P2) +

+ e−y (8eθq3 − 4e2θ) + 4e−2y e2θ
}

1
(ey − 2)2

ψ(y) = 0 .

Related to N = 2 SYM with Nf = 3. By the change of notations

R =
r
√

r − 2M
√

2M
ψ , r = 4Me−y

, eθ = −4iMω , P2 = l(l + 1)− 8M2
ω

2 +
1
4
,

q1 = 2− 2iMω , q2 = −2iMω , q3 = −2− 2iMω ,

it maps into the Teukolsky equation for Schwarzschild background (in its
homogeneous version, with spin s = −2) Teukolsky, Phys. Rev. Lett. 29 (1972) 1114;
Teukolsky, Astrophysical Journal 185 (1973) 635

r4f 2(r)
d
dr

[
d
dr R(r)

r2f (r)

]
+

(
ω2r2 + 4iω(r − M)

f (r)
− 8iωr − (l + 2)(l − 1)

)
R(r) = 0 , f (r) = 1−

2M
r
.
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Expressions for the wave function
The CHE has regular singular points at y = ln 2 which means r = 2M, i.e. the
BH horizon and at y = +∞ which means r = 0. Irregular at y = −∞ which
means r = +∞.

We are interested in the solution in between y = −∞ and y = ln 2.
By confluence limit of solutions of Heun, one finds solutions of the CHE
E.g. the Floquet solutions ψ±(y + 2πi) = e±2πikψ±(y).
Define Π±(y) = d/dy lnψ±(y) and Π±(y) =

∑+∞
n=0 Π

(n)
± (y)enθ

• a < y < ln 2 (near horizon, from confluence limit in right region of Heun)

Π
(0)
± (y)| =

d
dy

ln

[
(ey − 2)

1−q1−q2
2 e±ky

2F1

(
1
2
± k − q1,

1
2
± k − q2; 1± 2k ;

ey

2

)]
.

and
Π

(n)
± (y) =

d
dy

[
P(n)

0 (e−y ) +
n∑

m=1

P(n)
m (e−y )

dm−1

dym−1
Π

(0)
± (y)

]
, n ≥ 1

with P(n)
m (x) polynomials of degree n:

P(1)
0 (e−y ) =

2q3

1− 4k2
e−y

, P(1)
1 (e−y ) =

4q3

1− 4k2

(
e−y −

1
2

)
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• −∞ < y < a (far from horizon, from confluence limit in left region of Heun)

Π
(0)
± (y)| =

d
dy

ln

[
exp
(
−eθ−y ± k(y − θ)

)
1F1

(
1
2
∓ k + q3, 1∓ 2k ; 2eθ−y

)]
and

Π
(n)
± (y) =

d
dy

[
P(n)

0 (ey−θ) +
n∑

m=1

P(n)
m (ey−θ)

dm−1

dym−1
Π

(0)
± (y)

]
, n ≥ 1

with P(n)
m (x) polynomials of degree n:

P(1)
0 (ey−θ) =

(
−

1
4

+
q1q2

1− 4k2

)
1
2

ey−θ
, P(1)

1 (ey−θ) =

(
−

1
4

+
q1q2

1− 4k2

)
ey−θ

Similar expressions are in Fucito, Morales, Russo (2024) and Cipriani, Di Russo, Fucito, Morales,

Poghosyan, Poghossian (2025).

• In terms of Floquet basis one can construct ’physical’ solutions (i.e.
incoming at the horizon, ψin(y) = C̃

[
ψ−(y)− e−ϕψ+(y)

]
, outgoing at infinity

ψup(y) = D̃
[
ψ+(y)− e−ϕψ−(y)

]
, with ϕ = AD/~).
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Exact relations for the incoming solution Rin = r
√

r−2M√
2M

ψin:

Rin(r) ' Br3eiωr∗ +
e−iωr∗

2iωr
, r∗ = r + 2M ln

r
2M

, r → +∞

Rin(r) ' −i25/2(iMω)
5
2 +2iMω 1

MQ(θ, q1, q2, q3)

(
1−

2M
r

)2−2iMω
r → 2M

B = −
ω3

2
Q(θ + iπ, q1, q2,−q3)

Q(θ, q1, q2, q3)
(2Mω)4iMω

.

with Q the Wronskian of two well specified solutions of the CHE, ψ0,0 ∼ ψin,
ψ−,0 ∼ ψup: Q = W [ψ0,0, ψ−,0]

ψ0,0(y) ' 1√
2

(ey − 2)
1+q1+q2

2 y → ln 2

ψ−,0(y) ' e−(q3+1/2)θ+(q3+1/2)y exp
(
−eθ−y

)
y → −∞
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Summary and Perspectives

• In the framework of connections Painlevé / gravity /gauge theories we
studied ODEs of the Heun type. In particular Floquet solutions, which we
constructed perturbatively by using a system of (Riccati) first order ODEs.

• The relative connection coefficients ϕ coincide with AD/~, where AD is dual
gauge period of N = 2 SYM in the Nekrasov-Shatashvili background.

• Still to be done: understand (also numerically) the polynomials appearing in
the solutions: possible recursive relations between them.

• Study and construct subdominant solutions (in/up basis in gravity).

• Other Painlevé, other confluences of Heun equations
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MME in gravity and gauge theories

• By the map e−
y
2 = r

L , 2eθ = −iωL,P = l+2
2 , the above Modified Mathieu

Equation becomes the ODE which describes scalar field perturbation
φ(r) =

√
rψ±(y) of the D3 brane with supergravity background (AdS5XS5 both

with radius of curvature L) Gubser, Hashimoto ’98

ds2 = H(r)−1/2(dt2 + dx2) + H(r)1/2(dr2 + r2dΩ2
5) , H(r) = 1 + L4

/r4

In specific, one gets the radial wave equation for the l-th partial wave of
energy ω

d2φ

dr2
+

[
ω

2

(
1 +

L4

r4

)
−

(l + 2)2 − 1
4

r2

]
φ(r) = 0

V0 ∼ eiωr is the upgoing solution at r =∞, U0 ∼ eiωL2/r is the incoming at r = 0

• The Modified Mathieu Equation is the quantisation of the SW differential for
N = 2 SYM without matter in the NS background.
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Painlevé gauge correspondence

• Painlevé I —> H0 (Argyres-Douglas)
• Painlevé II—>H1

• Painlevé III3 —>Nf = 0 (MME)
• Painlevé III2—>Nf = 1
• Painlevé III1—>Nf = 2 (DCHE)
• Painlevé IV–>H2

• Painlevé V—>Nf = 3 (CHE)
• Painlevé VI—>Nf = 4 (Heun)
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Confluence limit Heun->CHE y = y ′ − θ/2, q4eθ = 4eθ3 , θ → −∞)

ϕ = −θ3k+2k ln 2+ln
Γ(1 + 2k)

Γ(1− 2k)
+

1
2

3∑
i=1

ln
Γ
( 1

2 − k + qi
)

Γ
( 1

2 + k + qi
)+

8kq1q2q3

(1− 4k2)2 eθ3 +....
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