Non-local Charges from Perturbed Defects

2504.05277

Bologna 2025

Motivation: to investigate symmetries of "New" flows

Prototype new flow: M3,10 + P1,7 -> M3,8

Conjectured TBA equation for ground state energy

Consistent with preservation of topological defects

Can we find other indications of integrability?

Consider some simple întégrable flous:

Massless How

TCIM - IM Mus + Pus - Mus

Massive flow

LY > SLY M2,5 + Q12 -> SLYM

Measures of Interability:

	TBA 24stem	local Conserved quantities	Classical Integrable model
$\mathcal{M}_{4,5} + \varphi_{1,3} \rightarrow \mathcal{M}_{4,3}$	✓	13,5,	Sine-Gordon
MZIS + QUZ -> SLYM	√	เ _เ ร,ิจ, แ,	2MS-8D-TZ.
M310+ 9117 - M318	(1)		

Local conserved quantities

[Zam. 89]

In CFT, holomorphic (chiral) current J(2) 0 J=0

In perturbed CFT, SS=MSQ(Z) JZ JJ=M (JQ)1

If $(J\varphi)_1 = \partial X$ then $\partial J = \partial (\mu X)$ $Q = \int J ds + \int \mu X ds$

In M3,10]

Results of search for local charges for CP, perturbations.

M(p,q)	c	h	4	5	6	7	8	9	10	11	12	13	14	15	16
(2,9)	$-\frac{46}{3}$	$-\frac{1}{5}$	_	_	1	_	1	_	_	-	1	_	1	_	_
(2, 11)	$-\frac{232}{11}$	$-\frac{9}{11}$	_	_	_	_	1	_	_	_	1	_	1	_	_
(3, 8)	$-\frac{21}{4}$	$\frac{3}{2}$	_	_	1	_	2	_	2	1	3	1	5	3	6
(5, 8)	$-\frac{7}{20}$	$\frac{9}{2}$	_	_	_	_	1	_	_	_	_	_	_	_	_
(7, 8)	$\frac{25}{28}$	$\frac{15}{2}$	_	_	_	-	_	_	_	_	_	_	1	_	_
(13, 18)	$\frac{14}{39}$	$\frac{17}{3}$	_	<u> </u>	_	s	_	_		_	_	_	1	_	1

Table 6: Models M(p,q) with $p,q \leq 20$ for which there are currents with spins ≤ 16 for $\psi_{1,7}$ perturbations which solve the first-order conservation condition (C.8), together with the number of independent currents for each spin.

Rigid Defects

Further conserved quantities: rigid defects

Well-known in her-Yang model

- · Free field construction [B17'94]
- . Intriusic CFT construction [Runkel '08, 10]

Starting point: topological defects

- · Topological defect symmetry preserved along flow
- De fect commutes with perturbing field
- · Topological defect symmetry broken by perturbation

Defect does not commute with perturbing field

Defects in Scaling hee-Yang model

$$M_{2,S}$$
: Single non-trivial primary field $p_{h=h=-V_S}$

Single non-trivial defect
$$\mathcal{D} \equiv \mathcal{D}_{(1/2)}$$

· D does not commute with the pertubation

$$[q(\Xi),D] = \frac{1}{1} - \frac{1}{1} \neq 0$$

Defects in Scaling hee-Yang model

M_{2,5}: Single non-trivial primary field

$$h=h=-V_S$$

Single non-trivial defect

$$\mathcal{D} \equiv \mathcal{D}_{(1/2)}$$

- · D does not commute with the pertubation
- Fields 4 (h=-15, h=0) 7 (h=0, h=-1/5) st.

$$[Q(\Xi),D] = \frac{1}{1-1} - \frac{1}{1-1} = c.\left(\frac{2^{2}}{1-1} - \frac{2^{2}}{1-1}\right)$$

8

Can show the perturbed defect commutes with the flavillarien

$$H \longrightarrow \bigcup_{\lambda, \lambda} \bigcup_{\lambda} \bigcup_{\lambda, \lambda} \bigcup_{\lambda, \lambda}$$

$$\mathcal{D}(\lambda, \hat{\lambda}) = e^{\int \lambda \psi + \hat{\lambda} \hat{\psi} d\theta} \cdot \mathcal{D}$$

$$[H, D(\lambda, \tilde{\lambda})] = 0 \iff M = \lambda \tilde{\lambda}$$

Defects Commute:

$$\left[\begin{array}{cc} \mathcal{D}(\lambda,\frac{M}{\lambda}) &, & \mathcal{D}(\widehat{\lambda},\frac{M}{\lambda}) \end{array}\right] = 0$$

Infinite set (family) of commuting non-local charges

- . $D(\lambda, \hat{\lambda})$ commutes with $H \iff \lambda \hat{\lambda} = M$
- ・ ア(がず) 一 エ ナ メ → ∞
- Have asymptotic expansion over local charges as $\lambda \to \infty$
- * Satisfies functional relation $D^{(+)}$, $D^{(-)} = 1 + D$

Bulk Commutation condition

- · Buk field op (h,h)
- · Defect D
- · Defect fields + (h,o) and + (a, h)

$$\mathcal{L}_{\mathcal{P},\mathcal{P}} = \mathcal{L}_{\mathcal{P},\mathcal{P}} = \mathcal{L}_{\mathcal{P}} =$$

Nice interpretation in SyntFT

rules:

$$\psi = \sum_{a,b \in \mathcal{D}} \kappa_{ab} \xrightarrow{a} \xrightarrow{b}$$

$$\overline{\psi} = \sum_{a,b \in \mathcal{D}} \widetilde{\kappa}_{ab} \xrightarrow{a} \overline{\psi}$$

Bulk commutation relation

Equations for K, TK

$$\delta_{ac} \left(\mathbf{R}^{(xa)b} - \frac{1}{\mathbf{R}^{(ax)b}} \right) \mathbf{F}_{1b}^{(ax\overline{x})a} = \delta_{b \in \mathcal{D}} \kappa_{ab} \widetilde{\kappa}_{bc} - \sum_{d \in \mathcal{D}} \mathbf{F}_{db}^{(xa\overline{x})c} \widetilde{\kappa}_{ad} \kappa_{dc}$$

Results of Bulk Commutation Test Depends on: The field $P_{r,s}$ The defeat $D = \{D_{r,s}; 100\}_{r,s}$

The model Mpg

Typically 4, 4 determined by the condition (up to normalisation)

12

Kesults of Bulk Commutation Test The field Prs Depends on: The defeat $D = \{D_{is}, \underline{1} \oplus D_{is}\}$. The model Mpg Mpg P1,3 D12: all models Mpq, q = 4 Known Cases: P12 1+D12: all models Mpg, 9 = 4 : all models Mpg, , 9 ≥ 6

In all cases the Lefect mutually commute.

9 fundamental defects $D_{1/5}$ $1 \le 5 \le 9$ $4, \forall$ exist an $D_{1/4}$ $D_{1/5}$ $D_{1/6}$

Bulk commutation relation { x not satisfied for D1,5 x not satisfied for D1,4, D1,6

Relation to local conserved charges: behaviour for $\lambda \to \infty$ (later, if time)

P1,7 in general models Mp19

D1,5 = 4,7 mD1,5 requires 9 = 9

Bulk commutation only satisfied for q=9, 10, 18

In each case, the perturbed defects mutually commute

Q_{1,5} in M_{3,10}

Defect	Perturbation				
	(13)	(157	(17)	(19)	
(12)	✓				
(13)	✓	✓			
(14)	~	×	× *		
(15)	✓	✓	/ *	/ *	
(16)	V	*	* *		
(1 7)	✓	✓			
(18)	✓				

*: requires regularisation, results only formal

P_{1,5} in general models Mpg

	Bulk comm	rutation ok for
	\supset	in MP19 for 9 in
$\Phi_{i,9}$	DCIST	{ 10, 11, 12}
-17	D(16)	E11, 123
	D (17)	ر ۱۶٬۱۲ ک
$Q_{i,\mathfrak{n}}$	D(16)	{ 12, 13 }
•	D CLA)	£ 13, 14 3
Q1,13	D (17)	[14, 15, 16 }
,	D C187	(15, 16 }
	D C19)	ن رو _م ۱۹ ک

Behaviour as $\lambda \to \infty$

The nature of the endpoint D ->? can be identified by booking at the spectrum of the Hamiltonian in the coased chamel

(Actually easier to look at model on a strip...)

Simpler still to look at

hep-th/9712197 Doreyet al.

- $\lambda \rightarrow \infty$ limit in case $\mu = 0$.
- · Model on a strip.

Further cases

So far, mostly considered perturbations of a single elementary defeat

Also looked at D = 1 + D the is a defeat changing field

Found many more cases which satisfy balk commutation relation.

Analysis of commutativity of perturbed defects still to be done-

Outlook

- · Check if formal calculations survive after regularisation and renormalisation
- · Check if can establish T-function type relations in "new" cases
- · Do defects commute in other cases?
- · Extend to boundary / strip systems [with A. Konechry]
- · Do these chazes, if they exist, actual have anything to do with?

Thank You.