Radiation tolerance tests of key electronic components of the dRICH RDO

FEB (ALCOR64) BDO board

> Sandro Geminiani (UniBo and Bologna INFN) ePIC general meeting-20/01/2025

The PDU radiation environment

The dRICH-PDUs are exposed on a moderate dose of radiation, which causes:

- SiPMs degradation.
- Lower reliability on Electronic component functioning.

Expected radiation exposure, including a 5 safety factor (ref data: https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses):

TID₅ ≅ 2.3 krad (for 1000 fb⁻¹)

 $\phi_5(p+n > 20 MeV) \cong 700 \text{ Hz/cm}^2$

- Cumulative effects: during the component life, the integrated TID increases component power consumption up to a final damage.
- Single Event Effects (FEE): localized event induced by a single particle, producing ionization through nuclear collision:

Transient (SET): spurious signals propagating in the circuit.Static (SEU): errors overwriting memory location.Permanent (SEL, ...): destructive events (permanent damage)

The PDU radiation environment

The dRICH-PDUs are exposed on a moderate dose of radiation, which causes:

- SiPMs degradation.
- Lower reliability on Electronic component functioning.

Expected radiation exposure, including a 5 safety factor (ref data: https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses):

- Cumulative effects: during the component life, the integrated TID increases component power consumption up to a final damage.
- Single Event Effects (FEE): localized event induced by a single particle, producing ionization through nuclear collision:

Transient (SET): spurious signals propagating in the circuit.Static (SEU): errors overwriting memory location.Permanent (SEL, ...): destructive events (permanent damage)

 $TID_5 \cong 2.3 \text{ krad}$ (for 1000 fb⁻¹)

 $\varphi_5(p+n>20 MeV) \cong 700 \text{ Hz/cm}^2$

IMPORTANT to estimate SEU and (potential) SEL occurrences for both RDO card and ALCOR FEBs !

The RDO Board

ТОР

4.0 cm

FPGAs

- AU15P: AMD Artix Ultrascale+ main FPGA interfacing with ALCORs.
- **MPF50T**: **Microchip PolarFire** FPGA responsible for the AU15P configuration (see later ...).

Clock multiplier

• Si5319 and Si5326 from SiLab.

Power management

- **2 LDOs LTM4709** for different power rails.
- **Micorchip ATtiny417** μcontroller, controlling power consumption.

<mark>Data link</mark>

• VTRX+: optical transceiver.

Proton irradiation campaign (@Proton Irradiation facility in Trento)

Waiting for the RDO...

ATtiny817-EVB

Proton irradiation campaign (@Proton Irradiation facility in Trento)

Irradiation session :

- Si5326 and ATtiny EVBs on a proton beam at 100 MeV kinetic energy (using a 10⁸ Hz/cm⁻² flux).
- ALINX XCAU15P board on a proton beam at 70 MeV kinetic energy (using a 10⁶/10⁷ Hz/cm⁻² flux).

Purpose:estimatingSEE/TIDsensitivityforselectedcomponentswaitingforfirstRDOprototypes.

Si5326 and ATtiny setup

Si5326 and ATtiny setup

ATtiny817 µcontroller

- Monitored memory: 6.6/8 KB of FLASH (53 Kb) and 450/512 B of SRAM (3.6 Kb).
- 21 SEUs detected on SRAM, while 0 SEUs on FLASH memory after 1026 s.
- The **ATtiny crashed in the last run** (TID effect or SEL?).
- TID = 23 krad (dose rate = 1-2 krad/min)
- SRAM: $\sigma_{SEU} = (3.89 \pm 0.54) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$
- **FLASH memory** (limit @ 95% C.L.): $\sigma_{SEU} < 3.83 \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$

MTBF in the dRICH system for ATtiny417: SRAM (256B): 4.0 h FLASH (4kB): > 26 h

Si5326 clock multiplier

- Monitored memory: 2007/2048 bits of configuration memory.
- **19 SEUs** and **0 SELs** detected after 1553 s.
- TID = 42 krad (dose rate = 1-2 krad/min)
- Besides the SEUs, the device did not lose the PLL lock keeping the out clock period stable.

•
$$\sigma_{\text{SEU}} = (2.11 \pm 0.50) \cdot 10^{-14} \frac{\text{cm}^2}{\text{bit}}$$

MTBF in the dRICH system for both Si5319 and Si5326: 3.8 h

MTBF = Mean Time Between Failure

Jitter and Period of the out clock

ALINX XCAU15P setup

The AU15P checks its own memory:

- **FF chains** and **Block RAM buffer** were configured with a **fixed pattern** and checked continuously (communication via IPbus over Ethernet link).
- Configuration RAM was checked by the Soft Error Mitigation (SEM) IP core by AMD (ref: <u>https://www.xilinx.com/products/intellectual-</u> property/sem.html).

The SEM IP is configured in **«Mitigation and testing»** mode:

- It locates the errors through ECC and CRC approaches.
- It corrects the error if the location is identified.
- It checks all the configuration memory.

ALINX XCAU15P setup

- Monitored memory: 8/156 Kb of FF memory, 3.6/5.1 Mb of BRAM and 33/33 Mb of CRAM.
- **0 SEUs** detected on **FF memory** and **69 SEUs** on **BRAM** after 2560s.
- **70 corrected SEUs**, **11 uncorrected SEUs** and **1 dead link** detected on **CRAM** after 2560 s.
- No SEL detected after 3706 s.
- TID = 6.36 krad (dose rate = 10-500 rad/min) after 3706 s.

FF memory (limit @ 95% C.L.): $σ < 3.5 \cdot 10^{-14} \frac{cm^2}{bit}$ MTBF in the dRICH system (156 Kb): > 3.6 min

> BRAM: $\sigma_{SEU} = (1.78 \pm 0.21) \cdot 10^{-15} \frac{\text{cm}^2}{\text{bit}}$ MTBF in the dRICH system (5.1 Mb): 2.1 min

SEU cross section and MTBF (33 Mb) in the dRICH system for CRAM :

	$\boldsymbol{\sigma}_{\mathbf{SEU}}\left(10^{-16}\frac{\mathrm{cm}^2}{\mathrm{bit}}\right)$	MTBF (min)
COR	(1.96 ± 0.25)	2.9
UNCOR	$(3.09 \pm 0.94) \cdot 10^{-1}$	18
TOTAL	(2.30 ± 0.28)	2.5

Conclusions and outlook

1. We integrated $TID{\sim}2.8 \cdot TID_5$ for the AU15P, $TID{\sim}10 \cdot TID_5$ for the ATtiny and $TID{\sim}18 \cdot TID_5$ for the Si5326.

No significative cumulative effect or SEL during all the tests, besides the **ATtiny crash.**

2. Si5326: MTBF = 3.8 h and the jitter analysis showed the out clock is very stable.

Devices tested up to a TID largely exceeding expected TID @dRICH: no destructive effects seen for TID \leq TID₅

The RDO AU15P will control the chip configuration every t \ll 3.8 h.

The FLASH MTBF is a safety limit and key RAM registers will be implemented with TMR checks.

3. ATtiny: SRAM MTBF = 4 h and FLASH MTBF > 26 h.

Conclusions and outlook

- Ultrascale+ FPGA SEUs cross sections estimated by AMD: 4.
 - ٠
 - BRAM: $\sigma_{SEU} = (9.82 \pm 1.77) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$ CRAM: $\sigma_{SEU} = (2.67 \pm 0.48) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$ •

Our CRAM estimate is compatible with the AMD one while our BRAM estimate differs for a factor ~2. Then, our estimates for MTBFs are:

FF MTBF > 3.6 min and BRAM MTBF = 2.1 min

CRAM MTBF = 2.5 min

They are manageable at the AU15P firmware level using TMR,CRC and reset features.

The RDO MPFT50 as a FLASH based FPGA will work as scrubber, ensuring fast SEU correction.

Conclusions and outlook

- Ultrascale+ FPGA SEUs cross sections estimated by AMD: 4.
 - ٠
 - BRAM: $\sigma_{SEU} = (9.82 \pm 1.77) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$ CRAM: $\sigma_{SEU} = (2.67 \pm 0.48) \cdot 10^{-16} \frac{\text{cm}^2}{\text{bit}}$ ٠

Our CRAM estimate is compatible with the AMD one while our **BRAM estimate differs for a factor** ~ **2**. Then, our estimates for MTBFs are:

FF MTBF > 3.6 min and BRAM MTBF = 2.1 min

They are manageable at the AU15P firmware level using TMR,CRC and reset features.

The RDO MPFT50 as a FLASH based FPGA will work as scrubber, ensuring fast SEU correction.

No showstoppers identified for tested RDO components. SEU mitigation strategies needed in firmware design, as expected!

Thank You for Your attention!

Backup slides

The RDO within the dRICH

SiPMs

Photon Detection Unit (PDU):

- 4 matrices (64SiPMs each)
 - 4 ALCOR64 FEBs
 - 1 RDO board

Detector Box:

• 208 PDUs

dRICH detector:

• 6 sectors for 1248 PDUS

Si5326 and ATtiny setup

Devices and TIFPA beam

DUT	Area (cm ²)	
ATtiny817	0.16	
Si5326	0.36	
AU15P Die	$\sim \frac{7.29}{6.67} = 1.09$	

E (MeV)	σ_x (mm)	σ_y (mm)	Asymmetry (%)
70.2	6.93	6.91	0.1
73.9	6.63	6.74	0.8
82.7	6.28	6.41	1.0
90.8	6.04	6.15	0.9
100.0	5.63	5.73	0.8

Energy [MeV]	Range [g/cm ²]	FWHM [mm]	Intensity [p/s]
70	4.1	16.2	3.83E+06
74	4.5	15.9	-
83	5.5	15.2	7.50E+06
91	6.5	14.6	9.94E+06
100	7.72	13.7	1.19E+07

Ref: https://www.sciencedirect.com/science/article/pii/S 0168900217306654

AU15P die and Flip-Chip package effect

The \sim **2 factor** for the BRAM SEU cross section can be **explained due to the effect of the FPGA package**? Such an effect was shown for CRAM bits for a Virtex-II FPGA (ref: https://www.researchgate.net/publication/3430143).

Beam Incidence Angle

ePIC general meeting-20/01/2025