

Commissioning of AixNet & Universality X_{\max} reconstruction for arrival-direction analyses

Lorenzo Apollonio, Lorenzo Caccianiga, Martin Erdmann, **Paolo Magnani**, Maximilian Stadelmaier

Università degli Studi di Milano, RWTH Aachen University, Karlsruhe Institute of Technology

AixNet is a deep neural network (DNN)

- Input: signal trace information.
- Output: atmospheric depth of the shower maximum X_{max} of the event as output.
- **Training:** simulated air shower footprints in Water Cherenkov Detectors (WCDs).

Universality is a model for SD traces that can (also) estimate X_{max}

- Based on the concept of the **universality** of parametrization for air showers.
- It uses time evolution of the signal to reconstruct X_{max} .
- Fitted on simulated air showers.

AixNet is a deep neural network (DNN)

- Input: signal trace information.
- Output: atmospheric depth of the shower maximum X_{max} of the event as output.
- **Training:** simulated air shower footprints in Water Cherenkov Detectors (WCDs).

Universality is a model for SD traces that can (also) estimate X_{\max}

- Based on the concept of the **universality** of parametrization for air showers.
- It uses time evolution of the signal to reconstruct X_{max} .
- Fitted on simulated air showers

When both methods are applied to data, they present detector-related dependences.

- X_{max} can be used as a **mass estimator** for the primary particle.
- With X_{\max} is possible to apply mass-dependent cuts in the dataset, to enhance significance in arrival-direction studies.
 - The cuts should not be biased by the mass estimator.

- X_{\max} can be used as a **mass estimator** for the primary particle.
- With X_{\max} is possible to apply mass-dependent cuts in the dataset, to enhance

significance in arrival-direction studies.

• The cuts should not be biased by the mass estimator.

Once all other dependences are removed, X_{max} is still energy-dependent.

 \rightarrow The energy dependency should be removed.

It is removed by subtracting the decadal elongation rate D_{10} :

$$X_{\max} \to X_{\max}^{19} \equiv X_{\max} - D_{10} \log_{10} \left(\frac{E}{10^{19} \text{ eV}} \right),$$

where

$$D_{10} \equiv \frac{\mathrm{d}\langle X_{\mathrm{max}}\rangle}{\mathrm{d}\log_{10}E} = 58 \mathrm{\,g\,cm^{-2}}$$

AixNet data set

- 125 000 6T5 events above 3 EeV from 2004 to 31^{st} august 2018, zenith $\theta \in (0^{\circ}, 60^{\circ})$.
- ICRC19 reconstruction
- X_{max} estimates of AixNet without fiducial cuts.
- Corrections already implemented:
 - detector-aging effects,
 - seasonal day-based calibration,
 - diurnal hour-based calibration,
 - absolute calibration on FD.

Universality dataset

- 209 000 5T5 and 6T5 events from Phase I above 4 EeV, zenith $\theta \in (0^{\circ}, 60^{\circ})$.
 - ICRC25 Offline reconstruction.

Dependences correction - AixNet

- Modulations have been searched and corrected for:
 - zenith angle,
 - o pressure,
 - o position in the detector array,
 - o geomagnetic field,
 - o year.
- \rightarrow generate X_{max}^{19} .

 \circ rescaling X_{\max}^{19} distribution in zenith.

Dependences correction - AixNet

- Modulations have been searched and corrected for:
 - o zenith angle,
 - o pressure,
 - o position in the detector array,
 - o geomagnetic field,
 - year. Not seen in Universality
- \rightarrow generate X_{max}^{19} .

 \circ rescaling X_{\max}^{19} distribution in zenith.

Dependences correction - Universality

• Modulations have been searched and

corrected for:

- o pressure,
- o months, Already corrected in AixNet
- o geomagnetic field,
- \rightarrow generate X_{max}^{19} .
 - o position in the detector array,
 - o zenith angle,
 - \circ rescaling X_{\max}^{19} distribution in zenith.

Implemented method for searching and correcting the dependences

Quantify the dependence through a χ^2 evaluation over the null hypothesis (i.e., no dependence)

Fit $X_{max}/\langle X_{max}\rangle$ with a function of the given observable; Apply the correction element-wise

Quantify the correction through another χ^2 evaluation over the null hypothesis

Corrections have been implemented using physics-motivated fits.

Zenith angle - AixNet

No sky region is uniquely defined by a zenith angle.

 \rightarrow Like the constant intensity cut, expected isotropy.

Corrected with 3rd degree polynomial fit:

 $f(\sin^2\theta) = a + b\sin^2\theta + c\sin^4\theta + d\sin^6\theta$

Zenith angle - Universality

Dependence corrected with a 6th degree polynomial fit in $\sin^2\theta$, iteratively calculated for

increasing energies: 4, 6, 8, 10, 12, 16, 20, 32 EeV.

Pressure - AixNet & Universality

Pressure depends linearly on atmospheric density.

 \rightarrow Linear dependence on pressure, + cos θ term to account for inclination.

Correction fit:

$$f(p, \theta) = a + b \frac{p}{\cos \theta}$$

Position in the detector array - AixNet & Universality

The simulations feature a flat detector array, but the surface detector is not flat.

 $\rightarrow~$ The modulation is corrected both for the East-West and North-South

 3^{rd} degree polynomial fit: $f(x) = a + bx + cx^2 + dx^3$

The correction removes the altitude dependence of data.

Geomagnetic field - AixNet & Universality

The simulations on which AixNet was trained accounted for the geomagnetic field,

but the East-West azimuth modulation shows that there's still some interaction.

The geomagnetic field is in the North-South direction:

 \rightarrow the modulation is mainly on the East-West direction,

Paolo Magnani - paolo.magnani@studenti.unimi.it

Geomagnetic field - AixNet & Universality

The modulation is corrected by a fit that mimics the interaction treatment in

simulations in Offline: $f(L_z, \theta) = a + c \frac{L_z}{\cos^b \theta}$

where $L_z = (\hat{r} \times \hat{B}_g)_z = \sin \theta \cos \phi \sin \theta_B \sin \phi_B - \sin \theta \sin \phi \sin \theta_B \cos \phi_B$,

with \hat{r} the arrival direction of the event, \hat{B}_{g} the direction of the geomagnetic field.

Geomagnetic field - AixNet & Universality

Before corrections

The removal of the geomagnetic modulation removes the East-West azimuth modulation.

1.004 1.004 1.002 1.002 $\langle X_{\max} \rangle \langle X_{\max} \rangle$ 0.998 $\langle X_{\max} \rangle$ X^{max}/ 0.996 0.996 flat $\chi^2 = 11.10$ flat $\chi^2 = 2.23$ fit: $1 - \frac{3}{1000}\cos(\phi) + \frac{1}{1000}\sin(\phi)$ fit: $1 - \frac{0.004}{1000}\cos(\phi) + \frac{1}{1000}\sin(\phi)$ 0.9940.994 -120120 180 -120180 120 180 60 -60 -180 0 60 60 0 azimuth angle ϕ / ° azimuth angle ϕ / °

After corrections

Year - AixNet

Predictions for X_{max} follow a wave pattern when plotted against years.

If data is compared to the 11-year Solar cycle, it suggests anticorrelation.

Post-trial *p*-value for a modulation in anticorrelation with the Solar cycle is 6×10^{-4} .

11-year cycle - AixNet

- An anticorrelation in the rate of cosmic rays with the Solar cycle has been seen by Auger in the Scaler mode.
- The influence of the Sun magnetic field is only seen for Galactic cosmic rays.
- A signal in the Scaler mode belongs to the background in the WCDs and is caused by lower energy cosmic rays.
- Corrected with a cosine function of period 11 years:

$$f(y) = a + b \cos\left(\frac{y}{11} + c\right)$$

Paolo Magnani - paolo.magnar

19

Seasonal modulation - Universality

 $X_{\rm max}$ estimates are sensible to yearly changes of the detector environment.

 \rightarrow a cyclic modulation in months appear.

Corrected with a periodic fit:

$$f(m) = a \cos\left(\frac{m}{6}\right) + b \sin\left(\frac{m}{6}\right) + 1$$

20

Generating *X*¹⁹_{max}

$$X_{\max}^{19} = X_{\max} - D_{10} \log_{10} \left(\frac{E}{10^{19} \text{ eV}} \right)$$

Paolo Magnani - paolo.magnani@studenti.unimi.it

- X_{\max}^{19} is a mass-dependent, energy-independent parameter.
- On X_{max}^{19} is possible to apply a cut, separating a light component and a heavy one.
- The light-heavy cut leads to a **zenith selection bias** in composition that is due to the widening of the distribution in θ .
 - $\rightarrow\,$ it is fixed by rescaling the distribution in zenith.

22

Rescaling method - AixNet

- 1. Bin the distribution in $\sin^2\theta$ and evaluate mean μ and standard deviation σ .
- 2. Find the minimum σ_{min} .
- 3. Rescale in every bin $i: X_{\max}^{19} \to (X_{\max}^{19})' = (X_{\max}^{19} \mu) \cdot \frac{\sigma_{\min}}{\sigma_i} + \mu$

Rescaling method - Universality

- 1. Define energy limits 4, 6, 8, 10, 12, 16, 20, 32 EeV.
- 2. Iteratively fit a 5th degree polynomial $f_{\sigma}(E)$ in sin² θ of $\sigma_{X_{\max}^{19}}$.
- 3. Fit the 6 parameters p_i of $f_{\sigma}(E)$ in the energy limits:

$$g(E, p_i) = \left(a + bp_i + cp_i^2\right) \exp\left(-\frac{E}{E_{0_i}}\right).$$

4. Iteratively rescale in energy:

$$(X_{\max}^{19})' = (X_{\max}^{19} - \mu) \cdot f_{\sigma}(E) + \mu$$

0.90^L

0.0

0.2

 $\frac{0.4}{\sin^2\theta}$

0.6

25

Outlook

• Universality and AixNet are simulation-based, SD-based X_{max} reconstruction methods.

1.004

1.002

 $\langle X^{\max}_X \rangle$ 1.000

× 0.998

0.996

0.99

• The data sets produced with the methods need to be corrected from detector-based biases.

Before corrections

- Dependences on
 - o zenith angle,
 - o pressure,
 - o position in the array,
 - o geomagnetic field,
 - o year/month.
 - were searched, found and corrected
- From X_{max} , a mass estimator X_{max}^{19} has been extracted.
- The widening of the X_{max}^{19} distribution in $\sin^2\theta$ due to the detector resolution has been rescaled.

flat $\chi^2 = 11.10$

fit: $1 - \frac{3}{1000}\cos(\phi) + \frac{1}{1000}\sin(\phi)$

News: ICRC25 dataset with KANE (DNN from Karlsruhe) is currently under commissioning

After corrections

-120

-60

azimuth angle ϕ

flat $\chi^2 = 2.23$

 $-\frac{0.004}{1000}\cos(\phi) + \frac{1}{1000}\sin(\phi)$

120

180

1.004

1.002

 $(X_{max})^{X}$

× 0.998

0.996

0.994

-180

120

60

azimuth angle ϕ / \circ

180

KANE

Feb 04, 2025

Berenika Čermáková, berenika.cermakova@kit.edu

More information - the next ML call

Feb 04, 2025

Berenika Čermáková, berenika.cermakova@kit.edu

Backup

Feb 04, 2025

Berenika Čermáková, berenika.cermakova@kit.edu

Reconstructed energy

Feb 04, 2025

Berenika Čermáková, berenika.cermakova@kit.edu

Grazie per l'attenzione!

Backup slides

Position in the detector array

- AixNet was trained on flat simulated detector array.
- The surface detector is instead not flat
 - \rightarrow it leads to a modulation on the position of the air shower event.

11-year cycle

- The tests show that Scaler data and X_{max} predictions can be related.
- Data from Universality does not show any modulation.
- In any case, the increase needed to obtain the modulation is far larger than the 1%

variation reported in the Scaler rate.

11-year cycle

average Scaler rate: 2000 cts/s

average Scaler peak: 0.25 VEM

time-step in simulation: 25 ns

2011 JINST 6 P01003

Every time-step gets on average $\sim 5 \times 10^{-5}$ cts

mean energy per time-step: ~ 1.3×10^{-6} VEM

Test 1: increase uniformly the background.

Test 2: increase density of Scaler-like peaks of 0.25 VEM.

11-year cycle

anticorrelates with X_{max} .

Geomagnetic field

 The observable for the geomagnetic field is the Lorentz vector:

$$\vec{L} = \hat{r} \times \hat{B}_g$$

• \hat{r} is the arrival direction of the primary particle,

 \widehat{B}_{g} is the direction of the geomagnetic field.

• In cylindrical coordinates, the *z*-component of

the Lorentz vector reads

 $L_z = \left(\hat{r} \times \hat{B}_g\right)_z$

 $= \sin \theta \cos \phi \sin \theta_B \sin \phi_B - \sin \theta \sin \phi \sin \theta_B \cos \phi_B$

AixNet tests already performed by Jonas Glombitza – seasonal and daily calibrations

AixNet tests already performed by Jonas Glombitza FD calibration

