
Preliminary application of 
unsupervised Self-Organizing Maps 
for muon fraction characterization 
Meeting	of	the	Auger Italian Collaboration	3-5	February 2025	

Matteo Conte!,#, Daniele	Martello!,#, Gabriella	Cataldi#,
Ugo	Giaccari#, Achille	Nucita!,#,$, Antonio	Franco#,$

1 – Università del Salento, Lecce 
2 – Istituto Nazionale di Fisica Nucleare,  Lecce
3 – INAF, Lecce

1



2

OVERVIEW

• Application
• Method
• Training
• Preliminary results
• Future Work
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Application - 𝒇𝝁	clustering using  Self-Organizing Map

• Find clusters and correlations from single station data:
Ø WCD essential features from time traces (𝑠𝑖𝑔𝑛𝑎𝑙, 𝐴𝑜𝑃, 𝑟𝑖𝑠𝑒𝑡𝑖𝑚𝑒, Δ𝑡!")
Ø SSD essential features from time traces (𝑠𝑖𝑔𝑛𝑎𝑙, Δ𝑡#$%&'()%#*$, 𝑝𝑒𝑎𝑘) → under study 
Ø Local station geometry (𝑟+,)
Ø Global (reconstructed) feature from shower (𝐸, 𝜃, 𝜑)

• Extract information on feature not used in training:
Ø 𝑓- ≡

.!
."#"

WCD → Know from MC simulations (semi-supervised method) 

• Using a data dimensionality reduction method, applied on a large-scale dataset:
Ø Specific training on GPU’s
Ø Application on test dataset and performance



A Self-Organizing Map, or 
SOM, is a method of data 
dimensionality reduction. It 
involves an unsupervised neural 
network to construct a 
discretized low-dimensional 
representation from the input 
space of training samples.

Method 

• Q must not be too large, otherwise the resulting map would have one single 
neurons adapted per each input data

• On the other hand a too poor map fails to catch an adequate organization of 
the data into separate classes
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Determining the Winning Neuron

Training – 1/4
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Training – 2/4

Weight Vectors Update
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Neighborhood updating function

Training – 3/4
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Training – 4/4

Decreasing Function – Hyperparameters time evolution
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Data Selection – MC simulations

SIMULATED SHOWERS:
Ø p, He, O, Fe
Ø log 𝐸	/𝑒𝑉  in [18.5, 20.2]
Ø minRecLevel 3, 6T5 
Ø 𝜃 up to 60°
Ø Candidate stations:

• 𝑠!"#/𝑉𝐸𝑀 > 5	
• 𝑠$$#/𝑀𝐼𝑃 > 10	

Ø Excluding LG saturation

icrc-2023 / EPOS-LHC interaction model

DATASET:
Ø Lenght: Over 3.6 million of inputs 
Ø Standardization: (𝑥 − 𝜇)/𝜎
Ø Subset splits:

• TRAINING: ~42%
• VALIDATION:   ~5% → Early Stopping 
• PROBABILITY MAPS: ~27%
• TEST: ~26%

The distribution of the target variable is 
not uniform across the phase space but 
exhibits an intrinsic deficit at the edges.
This affects the network’s predictive 
ability in accurately characterizing this 
class of data.
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Training Results
WEIGHTS MAPS 
 before training

WEIGHTS MAPS 
 after training

Quantization Error vs Epoch

Ø 𝑄. 𝐸. = ∑!"#
$%& #'()

!

&
Ø Early stopping when 

convergence reached
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Features MAPS / Predictions on new data

Performance on a new set of data 
(~𝟏 milion)
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Probability MAPS
Probability Maps 𝑓$ ⊂ [0.0, 1.0] binned in 10 classes 

(a discrete pdf per single neuron)
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Further tests – Energy and mass dependence
Ø 19.5 < log(𝐸/𝑒𝑉) < 20.0
Ø Two different training on proton and iron subsamples



14

Further tests – Energy and mass dependence

Ø 19.5 < log(𝐸/𝑒𝑉) < 20.0 
Ø Training on a mixture of  

proton and iron subsamples
Ø Fixed bias:

around −0.018 for proton-
induced showers
around +0.019 for iron-
induced showers

Ø Effect mitigated at the edge 
of phase space
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Dependence on Feature selection
To illustrate the importance of feature selection when passing inputs to the network for the characterization of the 
muonic fraction, we show the difference in training results on the proton/iron mix when using only 5 out of the 11 
features compared to using all of them.
In the first case, we lose predictive capability, with a significant increase in statistical uncertainty and an almost 
uniform distribution of the dataset.

5/11 11/11
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Summary
Ø The use of Self-Organizing Maps (SOM) enables training a network that effectively captures features 

and correlations within the data.
Ø The trained SOM accurately reproduces these features on previously unseen data,

demonstrating strong generalization capabilities.
Ø The model allows for the estimation of a feature that was not included during training

with a certain degree of precision.
Ø The selection of input data significantly influences the overall performance and accuracy of the model.

Next Step
Ø Conduct new tests to further investigate the dependence of the method on energy, primary mass 

and interaction model.
Ø Explore different combinations in the hyperparameter space
Ø Perform additional tests by evaluating extra SSD features to improve precision and reduce the 

model’s statistical uncertainty.
Ø Apply the method by leveraging the full signal from both the WCD and SSD, and potentially the entire 

Auger SD event, similar to image classification approaches.
Ø Application and comparison with SD-Phase II data
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Backup slides
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Data Selection – MC simulations

SIMULATED SHOWERS:
Ø p, He, O, Fe
Ø log 𝐸	/𝑒𝑉  in [18.5, 20.2]
Ø minRecLevel 3, 6T5 
Ø 𝜃 up to 60°
Ø Candidate stations:

• 𝑠!"#/𝑉𝐸𝑀 > 5	
• 𝑠$$#/𝑀𝐼𝑃 > 10	

Ø Excluding LG saturation

icrc-2023 / EPOS-LHC interaction model

DATASET:
Ø Lenght: Over 3.6 million of inputs 
Ø Standardization: (𝑥 − 𝜇)/𝜎
Ø Subset splits:

• TRAINING: ~42%
• VALIDATION:   ~5% → Early Stopping 
• PROBABILITY MAPS: ~27%
• TEST: ~26%



19

Correlations in the features MAP
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Probability MAPS

Probability Maps 𝑓$ ⊂ [0.0, 1.0] binned in 10 classes 
(a discrete pdf per single neuron)

The input data distributions in each of the 400 
neurons show good agreement between the 
mean and the mode, making them 
interchangeable in the model’s prediction, 
except at the edges of the phase space.
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Statistics in trained SOM


