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SUMMARY

1. Scalers time series, its spectral analysis and comparison with sunspot
area and sunspot number series (ApJ sumitted — ICRC2025)
2. Comparison with other proxies of solar activity (in preparation)

3. Future plans and work in progress



THE SCALER TIME SERIES

1.01

At—ed]
1| - :
5099'
= 0.98]
E |
0.97 | .
0_96 S T S A T T SN NN SN S SRS NN S SO S A S S SR A S N S A S SR SN NN S S A
2006 2008 2010 2012 2014 2016 2018 2020 2022
time [y]
Covered period: from January 1%, 2006, to March 215, 2022 (= 16 y)

Scaler data:

1. stored every second from each detector

2. corrected for pressure, lightning events and malfunctioning factors (M. Schimassek, 2022)

3. scaled to a known reference value (the mean count rate for 2013) obtaining the relative scaler rate r(t)
4. Gap-filling procedure based on an AR model

Time resolution: depending on the timescale of interest, different time resolutions were used (6 days, 2
days, 1 hour and 15 minutes).
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SPECTRAL ANALYSIS

Spectral methods:

- Singular Spectrum Analysis and Monte Carlo test (MC-SSA)
- Continuous Wavelet Transform (CWT)

Monte-Carlo approach: different null-hypothesis
Final spectrum =) statistically significant spectral components (99% c.l.)

. Last (not rejectable) null-hypothesis: AR(1) + RCs 11y, 1y, 9 months, 6 months, 28 d, 20 d, 14 d
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SCALERS AND SUNSPOT AREAS

* \ery similar spectral content; low noise in scalers!

* ~6-months: Rieger-type periodicity with ~186-d period:

- detected in various indicators of solar magnetic activity (X-ray

flares, 10.7 cm radio flux)

~9-months: detected in several solar activity indices (10.7 cm radio

flux, coronal index)

The physical origin of these solar periodicities is not entirely clear
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SSA SIGNIFICANT COMPONENT (99% c.1.)

SCALERS TOTAL SUNSPOT
AREA
Period Variance [%]
11y 68.2 53.7
1.2y - -
ly 14.8 -
~9 months 1.0
~6 months 1.6
~28d 2.1 7.0
20d 04 3.0
~14d 0.2 -
SIGNAL ~88% ~70%
NOISE ~12% ~30%
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The total sunspot-areas series shows 2 peaks:
~2012 peak ~2014-2015 peak

The analysis of the hemispheric sunspot-areas series shows that
the 6-months oscillation comes from the Northern hemisphere
the 9-months oscillation comes from the Southern hemisphere

SSA SIGNIFICANT COMPONENT (99% c.l.)
SCALERS
Period Variance [%]
11y 68.2 53.7 37.8 40.7
12y - -
1y 14.8 -
~9 months 1.0 4.0 6.2
~6 months 1.6 24 3.4*
~4 months
~28 d 2.1 7.0 8.1 12.0
20d 0.4 3.0 3.5
~14d 0.2
SIGNAL ~88% ~70% ~53% ~59%
NOISE ~12% ~30% ~47% ~41%




RESULTS CONFIRMED BY THE CWT METHOD ICRC2025

Total sunspot areas
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SCALERS AND SUNSPOT NUMBER:
decadal cycle
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Scaler rates from the Pierre Auger Observatory:
a new proxy of solar activity
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ABSTRACT

The modulation of low-energy galactic cosmic rays reflects interplanetary magnetic field variations
and can provide useful information on solar activity, An array of ground-surface detectors can reveal
the secondary particles, which originate from the interaction of cosmic ravs with the atmosphere, In
this work, we present the investigation of the low-threshold rate (scaler) time series recorded in 16 vears
of operation by the Pierre Auger Observatory surface detectors in Malargiie, Argentina. Through an
advanced spectral analysis, we detecled highly statistically significant variations in the time serics
with periods ranging from the decadal to the daily seale. We investigate their origin, revealing a direct:
connection with solar variability. Thanks to their intrinsic very low noise level, the Auger scalers allow
a thorough and detailed investigation of the galactic cosmic ray flux variations in the heliosphere at
different timescales and can, therefore, be considered a new proxy of solar variability.

Keywords: ISM:cosmic rays — Sunisunspots — Methods: data analysis

1. INTRODUCTION

During their propagation through the heliosphere, Galactic Cosmic Rays {GCRs) interact with the solar wind and
the heliospheric magnetic field, which modify their encrgy spectra. Changes in the interplanetary medium related to
variations in the Sun’s activity and to solar transient events thus determine the magnetic deflection of the trajectories
of GCR particles, modifying the flux of the GCRs reaching the Earth's atmosphere.

The process throngh which GCR particles interact with magnetic irregularities in the solar wind can be described
as a diffusion combined with convection and adiabatic energy losses (Parker 1065). In particnlar, during the minimnm
phase of solar activity, when the Sun is guiet, GCRs have a maximum intensity at Earth, and vice versa during solar
maximum conditions, so solar activity effectively modulates periodically the GCR flux with the same solar decadal
cyvele, Apart from this long-term modulation associated with the solar cycle, short-term wvariations of the Hux of
GCRs are also produced by the perturbed interplanetary condition near the Earth, such as interplanetary coronal
mass ejections (ICMEs) (e.g., Richardson & Cane 2010) or stream interaction regions (SIRs) (e.g., Richardson 2018),
These temporal depressions in the GCR flux, generally known as Forbush decreases (Forbush 1937), are s consequence
of changes on the GCRs transport plasma properties, While ICMEs are manifestations of solar eruptions, SIRs arise

ApJ (under review)



Solar magnetic field (paper In preparation)

« Heliospheric magnetic field intensity (|B|) and radial
component (B,) from the magnetic spectrometer on
board the Advanced Composition Explorer (ACE).
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 Coronal magnetic field at 2.5 R In correspondence of
the solar equator (B,s rp) extrapolated from the
photospheric magnetic field data, acquired by the solar
magnetometer of the Wilcox Solar Observatory (WSO)
at the Stanford University, by using a potential field
model. Indication of the warping of Heliospheric
Current Sheet (HCS).
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SCALERS AND HMF INTENSITY |B| COMPARISON
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SCALERS AND HMF INTENSITY |IB| COMPARISON
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SCALERS AND SUNSPOT NUMBER

SCALERS AND HMF INTENSITY

Using HMF intensity as solar activity proxy
the high delay disappears

\ ¢

MF is a better marker for solar
activity than sunpot number
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SPECTRAL COMPARISON
Singular Spectrum AnaIyS|s (SSA): significant (99% c.l.) components
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* Components related to the Sun

* 1.2-y component, known to characterize solar activity, not revealed
In the scalers due to the high power of the very close annual peak



28- and 14-d components reconstructed by SSA
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28- and 14-d components reconstructed by SSA

Scalers shows that the 28-d and 14-d cycles have higher
variability in the declining phase of the solar cycle
(maximum of the HMF Intensity!) ——> a period
characterized by more robust long-lived solar active
regions (more intense solar flares and CMEs)
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FUTURE PLANS and WORK IN PROGRESS - (7

C2:2017/09/10 16:12 AlA 193: 09/10 16:13

Sensitivity of scalers to sudden solar variations
(analysis of high resolution (1 h or less) scalers series):

=P - |dentification of Forbush decreases
- Is there an inprint in the scalers of Solar Energetic Particles generated impulsively by powerful solar
flares or gradually by coronal shocks?
- Correlation between the detected Forbush events and Interplanetary Coronal Mass Ejections to
Identify the origin of the Forbush decreases
=) - (Comparison between scalers and neutron monitors at similar latitudes

We need high-resolution scaler series!



(x — <x>)/sigma(x)

Identification of Forbush decreases (in progress)

(x = <x>)/sigma(x)
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https://www.nmdb.eu/

CONCLUSIONS

We have spectrally characterized the scaler series, identifying its strong relationship with solar
activity

Great advantage: intrinsic very low noise level, allowing detailed investigations of the GCR flux
variations in the heliosphere

mmmm) good opportunity for interesting studies at high resolution



Thank you for your attention!
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SOLAR ACTIVITY AND COSMIC RAYS FLUX
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relative amplitude

THE DAILY DOUBLE PEAK (preliminary)
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Example for June 2018

Asymmetric shape

| Al (:)5ﬁ ﬁ | L
i ‘.f‘ W‘ ‘Wl ‘ TR )\\ Ll (N

—Olri:inal ssssss ) )
101} | || f h ‘ ﬂ l '
SRR 1)
h‘ﬂ IR IR June 2020

I il Ts = 15 min

VLT PV L LT
1“",/‘/ M | P N;ﬂ ‘l {M;R;NJ\“ U“ g’ ”U\ bﬁ / | Series length = 2518

| \f\ N |
o | U '#‘ }JJPM 1 (~ 26 d)
= e
| L
V U |
2025.43 2025.44 2023.45 2025.46 202(1)‘47 202(l).48 202:)‘49 20210.5
time [y]

The asymmetric shape is always present
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The double peak is evident during periods of high and low solar activity

June 2010 (Solar minimum) June 2014 (Solar maximum) June 2020 (solar m|n|mum)
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Particles em2.s s

MS5.5

CME and X-ray flare (4 Sep 2017)

X9.3 CME and X-ray flare (6 Sep 2017)

X8.2 CME and X-ray flare (10 Sep 2017)
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S-min-average integral proton fluxes measured
from 4 to 15 Sep 2017 by GOES satellite for

energy thresholds.

-
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Vertical arrows indicate the timing of the above 3
CME/flare events (from Hubert et al. 2019)

Count rates from 4 to 15 Sep 2017 for 2 NM stations:
- SOPB (South Pole, Antarctica, Cutoff = 0.10 GV)
- TSMB (Tsumeb, Namuibia, Cutoff = 9.15 GV).

3 FDs (linked to the M5.5, X9 3, and X8.2 flares) are
visible in both NM stations but only the GLE due to
the X8.2 flare 1s clearly visible in the SOPB data due
to the low rigidity cutoff of this station.

Average interplanetary magnetic field <B> at 1 AU
from 4 to 15 Sep 2017: the 3 FDs (M5.5, X9.3, and
X8.2 flares) match the sudden increases in <B>.



THE GAP-FILLING PROCEDURE
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ANNUAL CYCLE
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The annual component seems absent in the |B| series,

but the distance R between ACE spacecraft and Sun

during the year shows the same seasonal variation of
the Earth-Sun distance

(1998 — 2022)

.Y | namans T
E ) all doto
&2[ . sinusoidal it 1 .
| sinusoidal fit 2
I
!
L

5.21 L i L L
0.0 0.2 0.4 0.6 0.8 1.0
fraction of yeor

We obtained an indication of the presence
of the annual oscillation in the |B| series
by performing sinusoidal fits on the series,

after having applied the superposition
of epochs method
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Annual oscillation in the radial component B,:

this indicates higher variability of the annual oscillation
along the radial direction with respect to the HMF intensity



MONTHLY AND SUB-MONTHLY MODULATIONS

SSA SIGNIFICANT COMPONENTS 99% c.l. — At = 2d

At=2d

28-, ~14-, and 9-days components: common origin
Detected in the time series of

— HMF intensity |Bj|

— HMF radial component B,

— coronal magnetic field at 2.50 R (B, 50r0)

SCALERS B B, B, sore
Period Variance [%]
Trend (~11-y) 64.2 17.0 14 34
1.2-y - 09 -
l-y 10.7 - 5.9 -
9-m 1.9 -
~6-m 1.5 - - -
Rd |22 [ A8 Ees |47
_______ 204 [ 03 | o7 | - | 16
~14-d 0.7 49 134 324
. T . 03 | .74 | 62 | ! 04
SIGNAL ~82% ~34% ~58% ~95%
NOISE 18% 66% 2% 5%

Noise level in the B,sy R much lower than those of |B| and B, series: being data extrapolated from the
photospheric field, thus excluding the noise caused by transient solar activities

Although the noise level observed in the scalers Is higher than that of B, s,z (due to the extrapolation of the
latter), it results much lower than that in B, (of a factor 2) and in |B| (of a factor 3.7)

This low noise level allows also to detect the two monthly oscillations not significant in the 3 magnetic field series
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* Black lines: clear evidence of the 3 cycles, well distinguishable especially in the B, 55 g5 Wav. spectrum
 These oscillations show higher and significant power during the solar maximum (2012—-2018)
» Annual cycle: clearly seen in the scaler rate and B, time series (not in B, g  series as expected)

» Decadal cycle: present in all series



The 28-days modulation is caused by the combination of the solar rotation
and an inhomogeneous distribution of long-lived solar active regions,
e.g. sunspots, coronal holes and coronal mass ejections (CMES).

14-days periodicity is linked to both solar active longitudes and tilted dipole
structure was observed in several solar activity indices, as well as the monthly
oscillation!?

9-d period was associated with the distribution of coronal holes (CHs)
appearing regularly spaced on the Sun over various solar rotations?

The 3 variabilities were also detected in the daily proton flux in cosmic rays?,

measured by the Alpha Magnetic Spectrometer (AMS) installed on the
International Space Station (ISS)

1L6pez-Comazzi, Solar Phys., 295, 2020
2Kalevi Mursula and Bertalan Zieger. "The 13.5-day periodicity in the Sun, solar wind, and geomagnetic activity: The last three solar cycles." J. of Geoph. Res.: Space Physics 101.A12 (1996)
3 M. Temmer et al. Periodic Appearance of Coronal Holes and the Related Variation of Solar Wind Parameters. Sol Phys 241, 371—-383 (2007)

4M. Aguilar et al. "Periodicities in the daily proton fluxes from 2011 to 2019 measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV." Phys. Rev. Lett. 127.27 (2021)
5S. Prabhakaran Nayar et al. Short-Period Features of the Interplanetary Plasma and Their Evolution. Sol Phys 201, 405—417 (2001)



RELATIVE SCALER RATE

Null hypothesis . T——" Period Variance (%)
components
AR(1) 1,2 Trend (~11 v) 68.2
AR(1) + RCs(1,2) 34 1-y 114
AR(1) + RCs(1+4) 5,6 I-v 34
AR(1) + RCs(1+6) 7 ~9-m 1.0
AR(1) + RCs(1+7) 8,9 ~6-m 1.6
AR(1) I RCs(1:9) 11,12 ~28-d 09
AR(1) + RCs(1+9,11,12) 17,18 ~28-d 0.6
AR(1) +RCs(1+9,11,12,17,18) 20,21 ~28-d 0.6
AR(1) I RCs(1:9,11,12,17,18,20,21) 41,4243 ~20-d 0.4
AR(1) +RCs(1+9,11,12.17,18,20,21 41+43) 62,63 ~14-d 0.2
AR(1) +RCs(1+9,11,12,17,18,20,21.41+43,62,63) B - -
SMF INTENSITY (|B))
Null hypothesis PiEpicHt Period Vanance (%)
components

AR(1) 1,2 Trend (~11 v) 37.9
AR(1) I RCs(1,2) 45 ~14-d 23
AR(1) +RCs(1,2.4.5) 3.6.9 1.2-y 3.6
AR(1) + RCs(1+6,9) 7.8 ~14-d 2.1
AR(1) I RCs(1:9) 10,11 ~28-d 2.1
AR(1) + RCs(1+11) 12,13 ~14-d 1.9
AR(1) + RCs(1+13) 14,19 ~9-m 1.7
AR(1) 1 RCs(1:14,19) 15,16 ~28-d 1.7
AR(1) + RCs(1+16.19) 17,18 ~28-d 1.6
AR(1) + RCs(1+19) 20,21 ~20-d 1.5
AR(1) + RCs(1:21) 2223 ~28-d 1.5
AR(1) + RCs(1+23) 3031 ~4-m 1.3
AR(1) + RCs(1+23.30,31) - - -
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PROXIES OF SOLAR ACTIVITY w1 =
(1) Sunspot number

% 200

« Archive of the SN series: World Data Center 100
(WDC) - Sunspot Index and Long-term
Solar Observations (SILSO)’ Royal 1750 1800 1850 1900 195 2000
Observatory of Belgium, Brussels. time

M) ——

300 f

 Daily data from 1818, monthly averages :
from 1749, and annual averages from 1700. 2 200f

L Y

2006 2008 2010 2012 2014 2016 2018 2020 2022
time [y]




PROXIES OF SOLAR ACTIVITY

(2) Sunspot areas

Archive of the sunspot areas series: United
States Air Force (USAF) Solar Observing
Optical Network (SOON), with the
contribute of the US National Oceanic and
Atmospheric Administration (NOAA).

Daily data and monthly averages from 1874.
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Origin of the double peak (preliminary)

Mean sea level pressure shows the double peak (blue curve)
June 2010

0.98} « IR o
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| 0.995 2

0.95} ——22 (T a 500hPa) . =
| ——surface pressure

094l L e o909
14 15 16 17 18 19 20

time UTC [d]
mmm) IS the scaler series well corrected for pressure?

Using the hypsometric equation: z2-z1=(R*T/g)*In(pl/p2) 21 : Auger level, p1: surface pressure, p2: 500 hPa

we reveal a density variation with double peak (pink curve)
Pressure/density variations may affect the scaler rate

mmmm) The correction could be efficient for long-term variations, but not for short-term variations



SINGULAR SPECTRUM ANALYSIS (SSA)

Characteristics of the SSA:

« separation of the deterministic components from the stochastic ones
« data-adaptive basis functions (instead of fixed sinusoids as in fourier methods)
« variance of the signal described by each component

* Monte Carlo approach — statistical significance



It involves 4 steps:
1. embedding the time series {X(t):t=0, ... N} ina vector space of dimension M

2. computing the MxM lag-covariance matrix C, of the data using the N'x M trajectory matrix D
(WithN'=N—-M + 1)

X(1) X2 XM
X(N) X(V'+1) o XW)

Nl
where: ¢;; = %thlll ]lX(t)X(t + i —JI)



3. diagonalizing Cy: determining eigenvectors E and eigenvalues A,

« eigenvectors E are definite variance directions
« eigenvalues A, are the partial variance in the direction E

Projecting the time series onto each eigenvector E . yields the corresponding temporal principal
components (PCs):

M
A = LX(t+)EF, t=0,N-M
j=1



4. determining with a Monte Carlo test the significant components.

The final series will be the linear combination of the reconstructed components (RCs):

M
R(D) =c, kZ Y At - DEF t=1N

eK j=1

where K is the set of significant components.



CONTINUOUS WAVELET TRANSFORM (CWT)

This method provides a map in the time-scale plane which allows to study non-stationary
features of the signal, such as:

— changes in periodicity
— Isolated events

— trends

— Intermittency



x(1)

x(1)

i
i

scaling s

The CWT is defined by:

1 (% t—1
w.a0=—) X h(——) dt

where:

* h(t) = mother wavelet

« a=dilation (scale) parameter
e t=translation parameter

Daughter wavelet = mother wavelet scaled
(compressed or stretched)

The result is a matrix of correlation values describing the similarity between
the signal and the daughter wavelet, at all considered scales and around

each temporal location



