# Updates on the harmonic-space cross-correlation power spectrum analysis: towards ICRC2025

Marta Bianciotto<sup>1,2</sup> Antonella Castellina<sup>2,3</sup> Armando di Matteo<sup>2</sup>

<sup>1</sup> Università degli studi di Torino <sup>2</sup> INFN Sezione di Torino <sup>3</sup> INAF-OaTo

Auger Meeting Italia, Torino February, 2025







- The harmonic-space cross-correlation power spectrum (XC) could be advantageous with respect to other methods to search for correlations between UHECRs and a catalog of source candidates<sup>1</sup>
- The goal of our analysis is to test the XC and compare it with the **test statistics**  $(TS)^2$  and the **auto-correlation** (AC, also known as angular power spectrum, does not require a catalog)<sup>3</sup>

<sup>1</sup>Urban et al. (2021); Tanidis et al. (2022); Tanidis et al. (2023); Urban et al. (2024) <sup>2</sup>max<sub> $\psi,f$ </sub> TS( $\psi, f, E_{\min} = 32$  EeV) as in Auger + TA (UHECR 2022) <sup>3</sup>C<sub> $\ell$ </sub> :=  $\frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |a_{\ell m}|^2$ 

### Introduction & motivations

Every function  $\Phi(\hat{n})$  over the celestial sphere  $(\hat{n} = (\alpha, \delta))$  can be expressed in terms of spherical harmonics

$$\Phi(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{n})$$

as a function of **harmonic coefficients** 

$$a_{\ell m} = \int_{4\pi} Y_{\ell m}(\hat{n})^* \Phi(\hat{n}) \, d\Omega$$

where  $d\Omega = d\alpha d \sin \delta$ and  $\ell$  is the degree of anisotropy over angular scale  $\sim 180^{\circ}/\ell$ .

In case of full sky coverage,  $a_{\ell m} = \sum_{i(\text{ev})} \frac{Y_{\ell m}(\hat{n}_i)^*}{\omega(\hat{n}_i)}$ , where  $\omega(\hat{n}_i)$  is the weight for each event

### Introduction & motivations

The cross-correlation method is based on the following concepts:

UHECR flux

$$\Phi(\hat{n})^{\text{CR}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{n})$$

Galaxy density/flux

$$\Phi(\hat{n})^{\text{GAL}} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} b_{\ell m} Y_{\ell m}(\hat{n})$$

- $\longrightarrow$  if UHECRs come from galaxies,  $a_{\ell m} \propto b_{\ell m}$
- $\longrightarrow$  harmonic-space cross-correlation power spectrum  $S_{\ell}^{4}$

$$S_{\ell} := \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} a_{\ell m}^* b_{\ell m}$$

<sup>4</sup>Urban et al. (2021); Tanidis et al. (2022); Tanidis et al. (2023); Urban et al. (2024)

# Catalogs of data & sources

After having extensively studied the cross-correlation method on full-sky simulations and public datasets (see GAP-2024-030), we apply it on the **new full-sky dataset** employed in the contribution for the UHECR 2024 Symposium:

- $\rightarrow$  Auger dataset: events with  $E \ge 32$  EeV detected until December 2022
- $\rightarrow$  TA dataset:  $E \geq 39.96~{\rm EeV}$  detected until May 2024

And we test the correlation between the data and two **source catalogs**:

- **1** Lunardini catalog: a catalog of nearby galaxies with a high star formation rate, denoted as starburst galaxies (SBGs)
- **2 MASS catalog**: a catalog based on the Two Micron All Sky Survey (2MASS), which considers all IR galaxies

Local Group galaxies (D < 1 Mpc) are excluded from the source catalogs Weights are applied to galaxy fluxes, with attenuations based on Auger combined fit (EPos LHC 1st minimum) as in Auger ApJ 2022

- Fixed energy threshold (48 EeV)
- Cross-correlation with Lunardini, comparison with isotropic band:



- Fixed energy threshold (37 EeV)
- Cross-correlation with 2MASS, comparison with isotropic band:



• Scan in energy thresholds 32-80 EeV

UHECR2024 WG data: XC with SBGs

• Cross-correlation with Lunardini (left) and 2MASS (right):



#### UHECR2024 WG data: XC with 2MASS

#### Maximum significance:

Cross-correlation, Lunardini pre-trial =  $4.8\sigma$  ( $\ell = 2$ ,  $E_{\rm th} = 48$  EeV), post-trial (1-tailed) =  $3.4\sigma$ Cross-correlation, 2MASS pre-trial =  $3.2\sigma$  ( $\ell = 2$ ,  $E_{\rm th} = 37$  EeV), post-trial (2-tailed) =  $1.0\sigma$ 

### Comparison with the auto-correlation

- Scan in energy thresholds 32-80 EeV
- Auto-correlation:



#### Maximum significance:

Auto-correlation pre-trial = 4.4 $\sigma$  ( $\ell$  = 2,  $E_{\rm th}$  = 48 EeV), post-trial (2-tailed) = 2.8 $\sigma$ 

# Combining auto- and cross-correlation power spectra

#### Motivations

• According to Urban et al. (2023), combining the auto- and cross-correlation power spectra could lead to reach detection levels of  $3\sigma$  or more for single multipoles at the largest scales

#### Theory

•  $C_{\ell}$  and the  $S_{\ell}$  are not independent measurements, so their covariance matrix  $\mathcal{M}$  has to be taken into account:

$$\mathcal{M} = \begin{pmatrix} \operatorname{Cov}(C_{\ell}, C_{\ell}) & \operatorname{Cov}(S_{\ell}, C_{\ell}) \\ \operatorname{Cov}(C_{\ell}, S_{\ell}) & \operatorname{Cov}(S_{\ell}, S_{\ell}) \end{pmatrix}$$

• The combined significance can then be calculated as:

$$\mathcal{S} = \sum_{\ell} \begin{bmatrix} C_{\ell} - \langle C_{\ell} \rangle_{\rm iso} \\ S_{\ell} - \langle S_{\ell} \rangle_{\rm iso} \end{bmatrix}^{T} \mathcal{M}^{-1} \begin{bmatrix} C_{\ell} - \langle C_{\ell} \rangle_{\rm iso} \\ S_{\ell} - \langle S_{\ell} \rangle_{\rm iso} \end{bmatrix}$$

where  ${\mathcal S}$  follows a  $\chi^2$  distribution with 2 degrees of freedom

# Results of the combined analysis

- Dataset: Public, Auger (ApJ 2022) + TA(ApJL 2014)
- Catalog: Lunardini



#### Maximum significance:

Auto- and cross-correlation pre-trial =  $3.6\sigma$  ( $\ell = 2, E_{\rm th} = 47$  EeV), penalized =  $2.9\sigma$ 

| Dataset        | Method                           | <b>Post-trial</b> $\sigma$ | l | $E_{th} [EeV]$ |
|----------------|----------------------------------|----------------------------|---|----------------|
| UHECR 2024     | XC (Lunardini)                   | 3.4                        | 2 | 48             |
|                | XC (2MASS)                       | 1.0                        | 2 | 37             |
|                | AC                               | 2.8                        | 2 | 48             |
| ICRC 2023      | XC (Lunardini)                   | 3.2                        | 2 | 47             |
|                | $\mathbf{XC} \ (\mathbf{2MASS})$ | 1.1                        | 2 | 38             |
|                | AC                               | 2.3                        | 2 | 47             |
| Public dataset | XC (Lunardini)                   | 1.2                        | 2 | 47             |
|                | XC (2MASS)                       | < 1                        | 2 | 44             |
|                | AC                               | 1.6                        | 2 | 47             |
|                | XC (Lunardini) + AC              | 2.9                        | 2 | 47             |

# Conclusions & discussion

#### Conclusions

- In general, the cross-correlation method appears to be more sensitive than the auto-correlation and slightly less sensitive than the test statistics ( $\sim 4.5\sigma$ )
- It could be interesting to study the cross-correlation method, maybe in combination with other methods, such the test statistics, and include it in future analysis
- To keep in mind: results shown in Urban et al. (2021); Tanidis et al. (2022); Tanidis et al. (2023); Urban et al. (2024) are not so relevant for our case scenario (SBGs), since their assumptions are different (energy threshold, composition, GMF...)

#### What's next?

- The results will be presented at ICRC2025 in the context of the Auger-TA working group on arrival directions
- Apply to new dataset the analysis combining the auto- and cross-correlation power spectra, which looks promising

Thank you!

Backup slides

Quadrupole  $(\ell = 2)$  visual representation:



# Combining dipole & quadrupole of the cross-correlation

- Sum of  $S_{\ell}$  ( $\ell = 1, 2$ ), fixed energy threshold (47 EeV)
- Dataset: Public, Auger (ApJ 2022) + TA(ApJL 2014)
- Catalog: Lunardini



#### Maximum significance:

Dipole & quadrupole pre-trial =  $4.0\sigma$ , post-trial (1-tailed) =  $3.0\sigma$ 

### Introduction

### Harmonic space

Every function  $\Phi(\hat{n})$  over the celestial sphere  $(\hat{n} = (\alpha, \delta))$  can be expressed in spherical harmonics

$$\Phi(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{n})$$

as a function of coefficients

$$a_{\ell m} = \int_{4\pi} Y_{\ell m}(\hat{n})^* \Phi(\hat{n}) \, d\Omega$$

where  $d\Omega = d\alpha \, d \sin \delta$ and  $\ell$  is the degree of anisotropy over angular scale ~  $180^{\circ}/\ell$ .

**<u>N.B.</u>** If we have full sky coverage  $a_{\ell m} = \sum_{i(\text{ev})} \frac{Y_{\ell m}(\hat{n}_i)^*}{\omega(\hat{n}_i)}$ , where  $\omega(\hat{n}_i)$  is the weight for each event  $\rightarrow$  Auger + TA

# Motivations

Why harmonic space?

- Spherical harmonics are a convenient basis for an expansion on a sphere because they are orthonormal and linearly independent
- The angular power spectrum describes the angular scales  $(180^{\circ}/\ell)$  of anisotropy in a rotationally invariant way and multipole moments of each order ( $\ell$ ) are separated by the same angular distance
- Dipole  $(\ell = 1)$  and quadrupole  $(\ell = 2)$  amplitudes are not much affected by coherent magnetic deflections and are attenuated by turbulent magnetic deflections only by a factor  $e^{\frac{-\ell^2 \theta_{\text{turb}}^2}{2}}$

Why cross-correlation?

- Cross-correlation (XC) is more sensitive to small-scale angular anisotropies than the standard auto-correlation (AC) used in previous works
- XC has higher  $S/N_\ell$  ratio than AC if optimal weights are used

# AC & TS

### Auto-correlation

The angular power spectrum is the average  $a_{\ell m}^2$  as a function of  $\ell$ 

$$C_{\ell} := \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^2$$

- The power in mode  $\ell$  is sensitive to variations over angular scales of  $180^\circ/\ell$
- Cℓ provides a quick and sensitive method to test for anisotropy and to determine its magnitude and characteristic angular scale(s)

This method is called AC (auto-correlation) because only  $a_{lm}$  from CRs data are considered

#### 2022 test statistics

The TS used in Auger + TA (UHECR 2022) is the following

$$TS(\psi, f, E_{\min}) = 2 \ln \frac{L(\psi, f, E_{\min})}{L(\psi, 0, E_{\min})}$$

where  $\psi$  is the angle, f is the signal fraction and  $E_{\min}$  is the energy threshold

If a single  $E_{\min}$  is considered the TS is a  $\chi^2$  with 2 degrees of freedom and the *p*-value is

$$p = \frac{e^{\frac{-\mathrm{TS}}{2}}}{2}$$

which can be easily converted in number of  $\sigma$ 

# Catalogs





### AC with catalogs

•  $C_{\ell} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} |b_{\ell m}|^2$ , where  $b_{\ell m}$  refers to the two catalogs



• For multipoles greater than  $\ell = 3$  for the Lunardini catalog and  $\ell = 2$  for the 2MASS catalog it is difficult to detect anisotropies even if there is a positive cross-correlation between data and catalog

### Datasets

Cross-calibration of energies using events arriving in the part of the sky visible to both:

$$E_{\text{Auger}} = E_0 \ e^{\alpha} \left(\frac{E_{\text{TA}}}{E_0}\right)^{\beta}$$

where  $E_0 = 10 \text{ EeV}$ ,  $\alpha = 0.157$  and  $\beta = 0.949$ 

# Comparison between public & ICRC2023 WG datasets

| Dataset                    | Experiment    | Number of events | $E_{th}$ [EeV] |
|----------------------------|---------------|------------------|----------------|
| $UHECR \ 2024 \ WG \ data$ | Auger         | 2936             | 32             |
|                            | $\mathrm{TA}$ | XXX              | 40.2           |
| $ICRC \ 2023 \ WG \ data$  | Auger         | 2936             | 32             |
|                            | ТА            | 404              | 40.2           |
| Public data                | Auger         | 2635~(2040)      | 32(44.58)      |
|                            | ТА            | 72               | 57             |

Analysis on simulations

### Analysis on simulations

- Composition: 10% pure compositions (He, N, Fe) + 90% isotropic background & 10% mixed (28.60% He + 69.05% N + 2.35% Fe) + 90% isotropic background
- Catalog: Simulated with Lunardini, reconstructed with Lunardini
- GMF model: JF2012 regular



### Analysis on simulations - Regular vs turbulent GMF

- Composition: Mixed composition
- Catalog: Simulated with Lunardini, reconstructed with Lunardini
- GMF model: All models



### Analysis on simulations - Regular GMF

Cross-correlation with Lunardini catalog (left) and autocorrelation (right):

- Composition: Mixed composition
- Catalog: Simulated with Lunardini, reconstructed with Lunardini



Scan in energy (32-80 EeV), XC

Scan in energy (32-80 EeV), AC

#### Maximum significance:

Cross-correlation pre-trial =  $3.7\sigma$  ( $\ell = 2$ ,  $E_{\rm th} = 32$  EeV), post-trial (1-tailed) =  $1.9\sigma$ Auto-correlation pre-trial =  $2.7\sigma$  ( $\ell = 2$ ,  $E_{\rm th} = 32$  EeV), post-trial (2-tailed)  $< 1\sigma$ 

### Analysis on simulations - Regular & turbulent GMF

Cross-correlation with Lunardini catalog (left) and autocorrelation (right):

• Composition: Mixed composition

Scan in energy (32-80 EeV), XC

• Catalog: Simulated with Lunardini, reconstructed with Lunardini



#### Scan in energy (32-80 EeV), AC

#### Maximum significance:

Cross-correlation pre-trial =  $3.5\sigma$  ( $\ell = 2$ ,  $E_{\rm th} = 32$  EeV), post-trial (1-tailed) =  $1.6\sigma$ Auto-correlation pre-trial =  $2.7\sigma$  ( $\ell = 2$ ,  $E_{\rm th} = 32$  EeV), post-trial (2-tailed)  $< 1\sigma$ 

34 / 13

# Analysis on simulations - 2MASS catalog

Cross-correlation with 2MASS catalog; regular GMF (left) and regular & turbulent GMF (right):

- **Composition**: mixed composition
- Catalog: simulated with Lunardini & reconstructed with 2MASS



#### Maximum significance:

- Regular GMF: pre-trial =  $3.7\sigma$ , post-trial (1-tailed)  $2.0\sigma$  ( $\ell = 2, E_{\rm th} = 32 \text{ EeV}$ )
- Regular & turbulent GMF: pre-trial = 3.6 $\sigma$ , post-trial (1-tailed) 1.7 $\sigma$  ( $\ell$  = 2,  $E_{\rm th}$  = 32 EeV)

# Analysis with the public dataset

# Analysis on public data

#### Cross-correlation with Lunardini catalog (left) and autocorrelation (right):



#### Scan in energy (44-80 EeV), AC

#### Maximum significance:

Cross-correlation pre-trial =  $3.2\sigma$  ( $\ell = 2, E_{\rm th} = 47$  EeV), post-trial (1-tailed) =  $1.2\sigma$ Auto-correlation pre-trial =  $3.3\sigma$  ( $\ell = 2, E_{\rm th} = 47$  EeV), post-trial (2-tailed) =  $1.6\sigma$ 

# Analysis on public data - 2MASS catalog

Public dataset, reconstructed with 2MASS:



Scan in energy (44-80 EeV), XC

#### Maximum significance:

• Cross-correlation: pre-trial =  $2.5\sigma$ , post-trial (1-tailed) <  $1\sigma$  ( $\ell = 1, E_{\rm th} = 44 \, {\rm EeV}$ )

Uncertainties in calibration (affecting  $\ell = 1$  and  $\ell = 2$ ) not taken into account

### Analysis with the ICRC2023 dataset

# Analysis on ICRC2023 WG data

#### Cross-correlation with Lunardini catalog (left) and autocorrelation (right):



Scan in energy (32-80 EeV), AC

#### Maximum significance:

Cross-correlation pre-trial = 4.6 $\sigma$  ( $\ell$  = 2,  $E_{\rm th}$  = 47 EeV), post-trial (1-tailed) = 3.2 $\sigma$ Auto-correlation pre-trial = 4.0 $\sigma$  ( $\ell$  = 2,  $E_{\rm th}$  = 47 EeV), post-trial (2-tailed) = 2.3 $\sigma$ 

# Analysis on ICRC2023 working group data - 2MASS catalog

#### ICRC 2023 dataset, reconstructed with 2MASS:



Scan in energy (32-80 EeV), XC

#### Maximum significance:

• Cross-correlation: pre-trial =  $3.2\sigma$ , post-trial (1-tailed) =  $1.1\sigma$  ( $\ell = 2, E_{\rm th} = 38 \, {\rm EeV}$ )

How many more years of TA?

### How many more years of TA to reach observation level?

For the cross-correlation method, the post-trial significance for 2/4/6/8/10 more years of TA data:



 $\to~$  With  $\sim 6$  more years of TA, we have the 50% of probability to observe  $5\sigma$  post-trial using the cross-correlation method

### How many more years of TA to reach observation level?

#### **Cross-correlation**

• Pre-trial to post-trial conversion was done with an extrapolation:



 $\sigma_{\text{post-trial}} = 13.39 \cdot \log_{10}(\sigma_{\text{pre-trial}}) + 1.51$