

PARALLEL 1 / ELECTROWEAK PHYSICS

Electroweak inputs

Michele Selvaggi (CERN)

23-27 JUNE 2025 Lido di Venezia

Linear vs. Circular

- Z-pole (√s ~ 90 GeV)
- WW threshold ($\sqrt{s} \sim 160 \text{ GeV}$)
- ZH threshold ($\sqrt{s} \sim 250$ GeV)

Circular

FCC-ee

- Huge luminosity
- 4IP
- absolute beam energy calibration up to 160 GeV
- 6 x 10¹² Z (5 years)
- 2.4 x 10⁸ WW (2 years)

LEP3

- Luminosity = FCC-ee/3.5
- 2IP
- absolute beam energy calibration up to 90 GeV
- 2x10¹² Z (6 years)
- 10⁸ WW (4 years)

- 5 x 10⁹ Z (2 years)
- 5 x 10⁷ WW (8 years)

Why EWK precision at intensity frontier?

- Potential to test the consistency of the SM via loop corrections
 - \circ sin²9^{eff}, m_w and other EWPOs parametrically depend on:
 - $\alpha_{\text{QED}}(\text{m}_{\text{Z}}), \text{m}_{\text{top}}, \text{m}_{\text{Z}}, \alpha_{\text{S}}(\text{m}_{\text{Z}}), \dots$
 - great precision is needed on these parameters to interpret potential deviations in terms of new physics
 - impacts Higgs precision physics
 - best to have many EWPOs to explore nature of BSM 'signals'
- Programmes
 - Z lineshape:
 - m_z , Γ_z , $A_f(\sin 9_W^{\text{eff}})$, $R_{\ell} = \Gamma_{\text{had}}/\Gamma_{\ell}$, $R_q = \Gamma_{qq}/\Gamma_{\text{had}}$, σ^0_{had}
 - $\alpha_{\text{QED}}(\text{m}_{\text{Z}})$, $\alpha_{\text{S}}(\text{m}_{\text{Z}})$
 - LCF: from lattice
 - FCC-ee, LEP3: direct measurement + Lattice
 - WW threshold (and above)
 - $m_W, \Gamma_W, BR(W \rightarrow \ell \nu), \alpha_S(m_Z), triple/quartic gauge couplings$

[2306.11413]

[2505.00272]

Caveats

- EWK factories will deliver 10⁹ 10¹² Z
 - vs. LEP/SLD 10-100 reduction in statistical uncertainties
 - \circ statistical accuracies on some of the measurements down to 10⁻⁶
 - systematic projections should be intended as targets for detectors/th. calculations
 - improvement of 10-1000X vs LEP
 - some will be challenging to reach, HARD work is needed
 - several systematics are de-facto of statistical nature
 - some of the projections are contentious and being challenged

- Theory uncertainties and tools are NOT discussed here (see this afternoon for more in-depth discussion) lots of work to do!
 - missing higher orders, multi-photon emission
 - MC modelling
 - NP QCD (hadronization) / parton showers
 - will be determined + heavily constrained by data

Z lineshape (the most challenging)

[0509008]

Z mass / Width

- **Z** Mass is a parametric input to xsec, width, BR, ...
 - Current uncertainty $\Delta m_2 \sim 2 \text{ MeV}$ (LEP) Ο
 - Statistical uncertainty scales as $\sim \Gamma_7 / 2\sqrt{N_7}^{off-peak}$ Ο
 - 4 (7) keV at FCC-ee (LEP3)
 - 20 keV at LCF
 - **Dominant systematic:** Ο
 - FCC-ee (LEP3): absolute beam energy calibration:
 - resonant depolarisation $\Delta \sqrt{s} \sim \Delta m_{2} \sim 100 \text{ keV}$
 - achieved at LEP, ongoing effort to improve 0
 - LCF: absolute momentum scale
 - $\Delta p \sim \Delta m_{\star} \sim 200 \text{ keV}$ using J/ ψ mass (K_s $\rightarrow \pi\pi$)
 - absolute limit 2 ppm (is 10 ppm more feasible?) 0
- **Z total width** is sensitive to fermion couplings and to BSM
 - Current **AF**, ~ 2 MeV 0
 - **Dominant systematic:** 0
 - relative absolute beam energy calibration
 - point-to-point $\Delta \sqrt{s}_{p.t.p}$ (uncorrelated component) \circ can be measured in-situ with $\mu\mu$ events
 - - ΔΓ, ~ 12 (25) (125) keV at FCC-ee (LEP3) (LCF)

 $\Gamma_{Z} = \Gamma_{ee} + \Gamma_{\mu\mu} + \Gamma_{\tau\tau} + \Gamma_{had} + \Gamma_{inv}.$

lepton universality:

$$R_{
m inv}^0 = \left(rac{12\pi R_\ell^0}{\sigma_{
m had}^0 m_Z^2}
ight)^{rac{1}{2}} - R_\ell^0 - (3+\delta_ au)$$

$$R_{
m inv}^0 = N_
u \left(rac{\Gamma_{
u\overline{
u}}}{\Gamma_{\ell\ell}}
ight)_{
m SM}$$

Leptonic Branching Ratios

- Defined as $\mathbf{R}_{\boldsymbol{\ell}} = \mathbf{\Gamma}_{had} / \mathbf{\Gamma}_{\boldsymbol{\ell}}$ with $\boldsymbol{\ell} = \mathbf{e}, \mu, \tau$ measure individual axial-vector couplings to the Z
 - provides α_s measurement through radiation QCD corrections
- Current (relative) uncertainties ~ 10⁻³
- Ratio, not affected to uncertainties luminosity, production cross-section etc ..
 - Dominant systematics:
 - acceptance determination at low angle for e, μ , (τ) (negligible for hadronic modes)
 - can be translated into detector requirement:
 - absolute polar angles (and radial, longitudinal)
 - 5-10 μm at 10°(20°) to match stat.
 accuracy at FCC-ee (3x10⁻⁶)
 - 10-20 μm at 10°(20°) to match stat.
 accuracy at LEP3 (6x10⁻⁶)
 - easily achievable at LCF (10⁻⁴)
 - Low angle Bhabha subtraction increases uncertainty for e+echannel

[0509008]

Hadronic Branching Ratios

- Defined as $\mathbf{R}_{\mathbf{q}} = \mathbf{\Gamma}_{\mathbf{q}} / \mathbf{\Gamma}_{\mathbf{had}}$ with $\mathbf{q} = \mathbf{b}, \mathbf{c}, \mathbf{s}$ measure individual chiral couplings to the Z \rightarrow (~ $\mathbf{g}_{L}^{2} + \mathbf{g}_{R}^{2}$) Current (relative) uncertainties ~ $\mathbf{10}^{-3}$
- Dramatic improvements compared to LEP are expected, driven by:
 - Reduced beam-spot sizes, light beam-pipe 0
 - Light and precise vertex detectors (few μ m single point resolution) 0
 - Particle ID allowing strange tagging (K+ identification up to 30-40 GeV) Ο
 - and NEW measurement of R₂
 - Advanced AI flavor tagging algorithms 0
 - pure b, c and strange jets \rightarrow background contamination negligible
- **Dominant systematics:**
 - Hemisphere correlations Ο
 - mainly driven by QCD (gluon emissions, $g \rightarrow bb/cc$, etc..)
 - can be positive (negative) for hard (soft) emissions
 - can be reduced with (acoplanarity) cuts
 - measured directly in data
 - 10⁹ (10⁶) gluon splitting samples in FCC-ee (LCF)
- **Projections:**
 - 2(b) 10(s) (4-10) x 10⁻⁶ for FCC-ee (LEP3) and 50-200x 10⁻⁶ for LCF Ο

[2202.03285]

Asymmetries (LCF)

• **A**_f measures the asymmetry between Left (L) and Right (R) handed **Zff** couplings ($sin^2\theta_w$):

$${\cal A}_{
m f} \;\; = \;\; rac{g_{
m Lf}^2 - g_{
m Rf}^2}{g_{
m Lf}^2 + g_{
m Rf}^2}$$

- Linear colliders can measure **A**_e directly via LR asymmetry, using longitudinal beam polarisation combinations
 - very clean experimentally (measure total hadronic cross-section)
 - independent of Z decay mode
 - requires excellent control of initial state polarisation
 - determined by Blondel scheme
 - provided best measurement of $sin^2\theta_w$ at SLC

$$A_{
m LR} \;=\; rac{1}{P_{
m eff}}\; rac{N_L - N_R}{N_L + N_R} \; pprox \; A_e$$

- \circ provides a measurement of $\Delta A_{p}/A_{p} \sim 2 \times 10^{-4}$
 - $\Delta \sin^2 \theta_{W} \sim 4 \times 10^{-6}$ (**100x** vs. today world average)

 $P_{e^-}pprox\pm0.80$, $P_{e^+}pprox\pm0.30$.

$$P_{
m eff} \;=\; rac{P_{e^-} - P_{e^+}}{1 - P_{e^-} P_{e^+}} pprox \;\; 0.89$$

Other fermionic symmetries (LCF)

• **A**_f can then be measured as the Left Right - Forward Backward asymmetry:

$$A^{\,f}_{
m LR,FB} = rac{1}{P_{
m eff}}\,rac{(N^F-N^B)_L-(N^F-N^B)_R}{(N^F+N^B)_L+(N^F+N^B)_R}\,\propto\,A_f$$

- \circ with a statistical uncertainty inflated by $1/\sqrt{B(Z \rightarrow ff)}$
- systematics:
 - Modelling uncertainties (symmetric) cancel
 - initial state polarisation (from A_{1R})
 - Measured at few 10⁻⁴ (depending on the fermion species)
 - 20-100X better than LEP

Asymmetries (FCC-ee/LEP3)

• At circular machines A_f can be measured through forward backward asymmetries in $ee \rightarrow ff$:

$$rac{d\sigma}{d\cos heta} = rac{3}{8}\,\sigma_{
m tot}\left[\,1+\cos^2 heta\,\,+\,\,rac{8}{3}A_{
m FB}\cos heta
ight]$$

- To infer A_f , one has to measure A_f by other means:
 - In ee \rightarrow ee, measure forward-backward asymmetry: $A_{\rm FB}^e = \frac{3}{4} A_e^2$
 - Challenges:
 - Requires t-channel Bhabha + interference subtraction
 - can be controlled off-peak
 - Dominant systematics:
 - A_{FB} is measured off- and on-peak, and A_{FB}^{0,e} is extracted as the value at m_z corrected of ISR, interference effects
 - \circ $\Delta \sqrt{s}_{p.t.p} \sim 20$ keV (uncorrelated component)
 - $\Delta A_e \sim 1.3 (2.6) \times 10^{-5} \text{ at FCC-ee (LEP3)}$

11

Asymmetries: A_e from τ -polarisation

- Without longitudinally polarised beams, one can access final helicity in ee → ff using *τ*-leptons
 - exploit that v_{τ} flies in the same (opposite) direction as τ for L(R) in the τ center-of-mass
- Can construct polarisation of final state as:

$$\mathcal{P}_{\mathrm{f}} \;=\; rac{\mathrm{d}(\sigma_{\mathrm{r}}-\sigma_{\mathrm{l}})}{\mathrm{d}\cos heta} \left/ rac{\mathrm{d}(\sigma_{\mathrm{r}}+\sigma_{\mathrm{l}})}{\mathrm{d}\cos heta} \;=\; -rac{\mathcal{A}_{\mathrm{f}}(1+\cos^{2} heta)+2\mathcal{A}_{\mathrm{e}}\cos heta}{(1+\cos^{2} heta)+2\mathcal{A}_{\mathrm{f}}\mathcal{A}_{\mathrm{e}}\cos heta}$$

- A_e can then be accessed as the forward backward tau polarisation asymmetry:
 - Very clean measurement since minimally affected by potential data/MC mis-modelling, as long as they are FB symmetric
 - Example: hadronization tau decays
 - Non-tau backgrounds (bhabha, $Z \rightarrow \mu \mu$), enough to assume 10x vs LEP
 - Big improvement to come with IP tau lifetime
 - $\Delta A_e/A_e \sim 2(4) \times 10^{-5}$ at FCC-ee (LEP3)

 $\Lambda^{\mathrm{pol}(\tau)}$

Other fermion asymmetries (FCC-ee/LEP3)

- Once **A**_e is known, **A**_f can then be measured from Forward-Backward asymmetries
 - dominant systematics:
 - $A_{FB}^{\mu,\tau}$: point-to-point energy calibration
 - $\Delta A_{FB}^{\mu} \approx 2.3 \ [2.4] \times 10^{-6} \Rightarrow \Delta A_{\mu}/A_{\mu} \sim 3(6) \times 10^{-5}$
 - $\Delta A_{FB}^{\tau} \approx 2.7 \ [2.4] \times 10^{-6} \rightarrow \Delta A_{\tau} / A_{\tau} \sim 4(7) \times 10^{-5}$
- **A**_q for heavy flavors (q=b,c,s) requires the determination of the jet (hemisphere) charge
 - Measure simultaneously:
 - average FB hemisphere charge difference AND sum
 - Measure charge separation
 - $\bullet \quad \rightarrow \Delta A_{FB}^{q} \sim 5 \times 10^{-6} \rightarrow \Delta A_{q} \sim 2 \times 10^{-4}$
 - dominant systematics:
 - Asymmetry in detector material (nuclear interactions produce excess of positive charge)
 - can be monitored with conversions
 - Background contamination
 - tagger purities much larger than LEP

 $\alpha_{\rm OED}({\rm m_Z})$, $\sigma_{\rm had}^{0}$

$$\cos^2 heta_{
m eff}^{
m f}\sin^2 heta_{
m eff}^{
m f} ~=~ rac{\pilpha(0)}{\sqrt{2}m_{
m Z}^2G_{
m F}}rac{1}{1-\Delta r^{
m f}}$$

- Electro-magnetic constant
 - Dominant parametric uncertainty in EW precision (sin ϑ_w^{eff} and m_w) fit:
 - Current uncertainty $\delta \alpha / \alpha = 1.4 \times 10^{-4}$
 - LCF has to assume required precision from Lattice
 - \circ ~ FCC-ee (LEP3) can directly measure it :
 - from off-peak FB asymmetry (interference with γ^*) in $\mu\mu$ events $(\delta\alpha/\alpha = 3x10^{-5})$
 - small experimental uncertainty, stat dominated
 - Z-pole energy points chosen to optimize measurement !
 - from $R_{e^{+/e^{-}}}$, $R_{e^{-/\mu^{-}}}$ ($\delta \alpha / \alpha = 0.6 \times 10^{-5}$)
 - $e^{\frac{1}{r}/e^{-}}$ efficiency control (charge mis-id), material budget
 - e^{-}/μ^{-} acceptance difference (to be determined from 10^{11} lepton pairs)
 - Can then provide comparison with Lattice calculation
- Peak cross-section
 - Sensitive to Zee coupling and total width, provides N_v
 - \circ limited by luminosity determination , $\delta \mathcal{L}/\mathcal{L}$
 - Bhabha ~ 10⁻⁴ (FCC-ee, LEP3, LCF)
 - $e^+e^- \rightarrow \gamma\gamma \sim 2(4) \ 10^{-5}$ (FCC-ee, LEP3)

WW threshold and above

W mass / width (threshold scan) - Circular

- W mass is a a crucial input to test SM consistency
 - Current uncertainty **∆m**_w ~ 10 MeV (LHC)
- At lepton colliders, the simplest way is to measure it, is via a threshold scan, i.e cross-section vs. beam energy:
- With 2 or more energy points, m_w and Γ_w can be extracted simultaneously

$$\Delta m_{\rm W}({
m stat}) = \left(rac{d\sigma_{
m WW}}{dm_{
m W}}
ight)^{-1} rac{\sqrt{\sigma_{
m WW}}}{\sqrt{\mathcal{L}}}$$

- $\Delta m_w^{scan}(stat) \sim 400 \text{ keV} (FCC-ee)$
- $\Delta \Gamma_{W}^{scan}$ (stat) ~ **1MeV** (FCC-ee)
- Dominant systematics, beam energy calibration
 - Absolute energy calibration
 - Δm_w (syst) ~ 150 keV (FCC-ee) (300 keV on \sqrt{s})
 - via resonant depolarisation (**only at FCC-ee**)
 - Δm_W (syst) ~ 700 keV (LEP3)
 - via radiative return Z (at LEP3)
- Through polarized scan, Δm_w (LCF) ~ 2 MeV (not in official run plan)

<u>[2107.04444]</u>

16

W mass, kinematic fit

- **W mass** can also be accessed through direct reconstruction of decay products: a kinematic fit (done at LEP2)
 - can be performed at threshold (~ 160 GeV) \rightarrow FCC-ee, LEP3
 - \circ in the "boosted" regime (~ 240 GeV) → LCF, FCC-ee, LEP3
- Major sensitivity from the **qqℓv** channel (1C) (4 3)
 - \circ Avoid issues with color reconnection
 - Use full 4-momentum constraints
 - Allows to fully resolve the neutrino kinematics → 4-3=1 constraint
 - Additional constraint that W masses are equal (2C)
 - Dominant systematics
 - absolute √s and BES calibration
 - FCC-ee : resonant depol. + di-muon
 - LEP3, ILC: radiative Z returns
 - hadronization
 - more important where WW system is boosted (since non isotropic)

 $\Delta m_W^{kin}(stat) \sim 210 (400) \text{ keV} - \text{FCC-ee}(\text{LEP3})$ $\Delta m_W^{kin}(\sqrt{s}) \sim 160 (700) \text{ keV} - \text{FCC-ee}(\text{LEP3})$

∆m⁻⁻_w⁻⁻ kin(had.) ~ 1 MeV

17

W properties

- Large **W** production rate can be exploited to constrain leptonic BRs
 - absolute measurement will be limited by luminosity determination
 - **from** $\gamma\gamma$ / BhaBha , $\delta \mathcal{L}/\mathcal{L} \sim 10^{-4}$
 - \circ ~ FCC-ee / LEP3 / LCF ~ $\sim 10^{-4}$ / 2 10^{-4} / 2 10^{-4}
 - Triple/Quartic Gauge couplings
 - \circ through WW/VBS production
 - optimal observable analysis exploiting full 5D angular information of WW decays in semilep decay
 - LCF has powerful constraints thanks to:
 - Initial state polarisation
 - Higher energy
 - energy growth of relevant operators
 - higher luminosity
 - few 10⁻⁴ in reach at LCF

From WW and ZH threshold	0.10	0.13	16	\pm	1071	${\cal B}(W o ev_e) imes 10^4$
luminosity						
From WW and ZH threshold	0.10	0.13	15	±	1063	$\mathcal{B}(W ightarrow \mu v_{\mu}) imes 10^4$
luminosity						-
From WW scan ZH threshold	0.15	0.13	21	±	1138	$\mathcal{B}(W o au \mathbf{v}_{\tau}) imes 10^4$
luminosity						•

Conclusions

- For Z-pole precision measurements:
 - Linear Collider has the advantage of longitudinal polarisation
 - Circular colliders have the advantage of luminosity (300-1000)
- Per unit of luminosity, Chiral observables (asymmetries) are measured better at linear colliders ,
 - \circ by ~ 1/A_e² ~ 40
- However FCC-ee (LEP3) have 1000(300) more luminosity at the Z pole, so overall measurements are more precise by factors of:
- For the W mass, difference is milder, but resonant depol. makes a difference for FCC-ee vs LEP3/LCF
 - \circ m_W \rightarrow 4: 1: 1
- Di-fermion production and multi-boson production can be uniquely probed by
 - \circ ~ linear colliders (ILC, CLIC, \ldots) up to 500-3 TeV
 - \circ muon collider up to 10 TeV
 - FCC-hh up to 40-50 TeV

Backup

Lepton universality tests and $\sin^2\theta_w$

Table 6: Projected ABSOLUTE uncertainties on value of $\sin^2 \theta_{\rm W}^{\rm eff}$ obtained at the Z-pole from FCC-ee, LCvision, and LEP3. When two numbers are given, the first [second] corresponds to the projected statistical [systematic]; total uncertainty.

FCC		
quantity	uncertainty	$sin^2 \theta_W^{eff}$
$A_{FB}^{0,\ell}$ (10 ⁻⁶)	1.4 [2.7]	0.75 [1.44]; 1.6
$\mathcal{A}_e \text{ from } A_{\mathrm{FB}}^{\mathrm{pol}(au)}$	7 [20]	0.9 [2.5]; 2.8
$A_{FB}^{0,b} (10^{-6})$	4 [4]	0.74 [0.74]; 1.03
$A_{FB}^{0,c}$ (10 ⁻⁶)	5 [5]	1.3 [1.3]; 1.8
${ m A_{FB}^{0, \overline{c}}}~(10^{-6})$	$7.4 \ [7.4]$	$1.4\ [1.4]\ ;\ 1.9$
FCC combination of $\sin^2\theta_{\rm W}^{\rm eff}$		$0.4 \ [0.5] ; 0.7$

LEP3		
quantity	uncertainty	$\sin^2 heta_{ m W}^{ m eff}$
$A_{FB}^{0,\ell} (10^{-6})$	2.6 [4.6]	$1.4 \ [2.7] \ ; \ 3.0$
$\mathcal{A}_e \text{ from } A_{\mathrm{FB}}^{\mathrm{pol}(\tau)}$	13 [39]	$1.7 \ [4.7] \ ; \ 5.2$
$A_{FB}^{0,b} (10^{-6})$	7.8 [7.8]	1.4 [1.4]; 2
$A_{FB}^{0,c}$ (10 ⁻⁶)	9.5 [9.5]	2.4 $[2.4]$; 3.4
${ m A_{FB}^{0,\overline{c}}}~(10^{-6})$	14 [14]	2.6 [2.6]; 3.6
LEP3 combination of $\sin^2\theta_{\rm W}^{\rm eff}$		$0.75 \ [0.95] \ ; \ 1.35$

- 1	<u> </u>		
	111	71S	ion

quantity	uncertainty	$\sin^2 heta_{ m W}^{ m eff}$
\mathcal{A}_e from $A_{\rm LR}(10^{-6})$	23 [19]	2.9 [2.4]; 4
$A_{\mu} \text{ from } A_{\text{LRFB}}^{(\mu)} (10^{-6})$	100 [50]	$12.6 \ [6.3] ; 14$
\mathcal{A}_{τ} from $A_{\text{LBFB}}^{(\tau)}$ (10 ⁻⁶)	100 [50]	$12.6 \ [6.3] ; 14$
LC vision combination of $\sin^2 \theta_{\rm W}^{\rm eff}$		2.75 [2.4]; 3.7

 $\label{eq:table_transform} \begin{array}{l} \textbf{Table 5: Projected RELATIVE uncertainties on partial-width ratios obtained on peak at the Z-pole from FCC-ee, LCvision, and LEP3. When two numbers are given, the first [second] corresponds to the projected statistical [systematic] uncertainty. . \end{array}$

Observable	present	FC	C-ee	LC	CF	LE	P3	Comment and
(value)	uncertainty	Stat.	[Syst.]	Stat.	[Syst.]	Stat.	[Syst.]	leading uncertainty
$\mathrm{R}_\ell \equiv rac{\Gamma_{\mathrm{had}}}{\Gamma_\ell}$	20.767 ± 0.025							
relative uncertainty (10^{-6})	1200	1.5	[2.3]			2.8	[2.3]	Low angle acceptance
$R_e \equiv \frac{\Gamma_{had}}{\Gamma_e}$	20.804 ± 0.050							
relative uncertainty (10^{-6})	2400	3.4	[2.3]	200[500]	6.4	[2.3]	Low angle acceptance
$R_{\mu} \equiv \frac{\Gamma_{had}}{\Gamma_{\mu}}$	20.785 ± 0.033							
relative uncertainty (10^{-6})	1600	2.4	[2.3]	200	[200]	4.5	[2.3]	Low angle acceptance
$R_{\tau} \equiv \frac{\Gamma_{had}}{\Gamma_{\tau}}$	20.764 ± 0.045							
relative uncertainty (10^{-6})	2100	2.7	[2.3]	200	[200]	5.1	[2.3]	Low angle acceptance
LEPTON UNIVERSALITY								
Axiai vector couplings	1 (10-6)		1		20	-	0	
R_e/R_ℓ	rel. (10^{-6})	3	.1	60	00	5	.8	
R_{μ}/R_{ℓ}	rel. (10^{-6})	2	.8	30	00	5	.3	
R_{τ}/R_{ℓ}	rel. (10^{-6})	3	.6	30	00	6	.8	
Vector couplings	0							
$A_{FB}^{0,e} / A_{FB}^{0,\ell}$	rel. (10^{-6})	2	10	N.	A.	3	90	
$A_{FB}^{0,\mu}$ / $A_{FB}^{0,\ell}$ or $\mathcal{A}_{\mu}/\mathcal{A}_{e}$	rel. (10^{-6})	1	57	70	00	2	95	
$\mathrm{A}_{\mathrm{FB}}^{0, au}$ / $\mathrm{A}_{\mathrm{FB}}^{0, au}$ or $\mathcal{A}_{ au}/\mathcal{A}_{e}$	rel. (10^{-6})	1	83	70	00	34	45	
		-	-	_		-		
QUARK FLAVOURS								
$R_b \equiv \frac{\Gamma_b}{\Gamma_{\rm bad}}$	0.21629 ± 0.00066							
relative uncertainty (10^{-6})	3300	1.2	[1.6]	20	[60]	2.2	[3.0]	multiple flavour tags
$R_c \equiv \frac{\Gamma_c}{\Gamma_{\rm bad}}$ relative (10^{-6})	0.1721 ± 0.0030							
relative uncertainty (10^{-6})	17000	1.4	[2.2]	100[250]	2.6	[4.2]	multiple flavour tags
NEW! $R_s \equiv \frac{\Gamma_s}{\Gamma_{\text{bad}}}$ relative (10^{-6})	N.A.							
relative uncertainty (10^{-6})	N.A.	2.5	[11]	-	-	4.7	[21]	multiple flavour tags