

PARALLEL 1 / Electroweak physics

Overall assessment of projects (including HL-LHC inputs)

Angela Taliercio

23-27 JUNE 2025 Lido di Venezia

Introduction

- 3x increase of peak luminosity
 - Data equivalent to 3000 fb-1 in 10 years of operation
 - **Upgraded CMS** detector to cope with higher pileup and radiation damage

- ~ 36.7M HH events at 3000 fb⁻¹ for CMS+ATLAS
- ~ 367M signleH events at 3000 for CMS+ATLAS fb-1

Lots of statistics \rightarrow precise measurements

2

Introduction

- 3x increase of peak luminosity
 - Data equivalent to 3000 fb-1 in 10 years of operation
 - **Upgraded CMS** detector to cope with higher pileup and radiation damage

- European Strategy for Particle Physics is the cornerstone for Europe's long-term decision making process
- Last update from 2020
- Priority on the successful Ο completion of the High-Luminosity LHC over the coming decade
- Higgs factory as the highest priority Ο to follow the LHC

2025 ESU update - updated HL-LHC projections

We want to emphasize the unique opportunity that HL will give: more lumi + new analysis technique explored in the past 5 years Ο unique update the expected precision on the Higgs couplings

2025 ESU update - updated HL-LHC projections

- - update the expected precision on the Higgs couplings Ο
 - establishing the shape of the electroweak vacuum Ο
 - stability of the universe 0

First attempt to give a proper answer to those questions

We want to emphasize the unique opportunity that HL will give:

Single H projections - what's improved in HL?

HL is still going to be the best machine for $Z\gamma$, μ and ttH coupling determination for the next decades years (until FCC-hh)

*<u>Phys. Rev. Lett. 132 (2024) 221802</u>

Single H projections - what's improved in HL?

HL is still going to be the best machine for $Z\gamma$, μ and ttH coupling determination for the next decades years (until FCC-hh)

*Phys. Rev. Lett. 132 (2024) 221802

optimize both the inclusive measurement of the signal strength (especially in the rare channels)

Single H precision - H > Zy and H > µµ

- At present, unmeasured Higgs coupling
- Relation between $H \rightarrow Z\gamma$ and $H \rightarrow \gamma\gamma/H \rightarrow ZZ$ ratios is sensitive to new physics
- The determination of the $H \rightarrow Z\gamma$ signal is heavily limited by statistical uncertainties
- The H \rightarrow µµ decay is the most promising channel for measuring Higgs boson interactions with second generation fermions

C		$\delta \mu$	[%]
L		$H \to Z\gamma$	$\dot{H} \to \mu\mu$
	ATLAS	21	13
2 ab^{-1}	CMS	23	8.4
	ATLAS+CMS	15	7.1
	ATLAS	17	11
3 ab^{-1}	CMS	19	7.0
	ATLAS+CMS	14	5.9

Single experiment discovery will be reached at the intermediary stages of the HL-LHC

Single H precision - Higgs couplings

- The precision of κ_{u} and κ_{Zv} improves by 30%, wrt old projections
- Z coupling worsen wrt 2020 because less aggressive assumptions on the theory uncertainty were made this year

Single H precision - Higgs couplings

- The precision of κ_{μ} and $\kappa_{Z\gamma}$ improves by 30%, wrt old projections
- <u>Theory uncertainties are dominating</u>
 if driven by experimental precision, we could reach a further factor 2 improvement

Non-resonant HH projections

- Double H production in ggF is the most direct probe on the H potential
 - Small cross section -> process still undetected Ο
 - Searches provide direct constraints on the H self coupling 0
 - Test of the Electroweak Symmetry Breaking (EWSB) mechanism First direct measure of the λ_3 parameter -> implication for the shape of the H potential and the order of the phase transition of the universe

Special scenario where the b-jet and hadronic tau IDs improvements confirmed by public material is extrapolated to the Run 2 results - still very conservative scenario

11

HH results - Significance

3000 fb⁻¹ per experiment, run3 object improvement included

Channel	HH Significance ATLAS	HH Significance CMS			
bbтт	3.8	2.7			
bbyy	2.6	2.6			
4b resolved	1.0	1.3			
4b boosted	_	2.2			
Multilepton	1.0	_			
bbll	0.5	_			
Combination	4.5	4.5			
ATLAS + CMS	7.60				

• Evidence with single experiment

• Combined evidence >7σ

HH results - k_{λ} precision

3000 fb⁻¹ per experiment, run3 object improvement included

Channel	K3 precision 68% CL ATLAS	K3 precision 68% CL CMS			
bbтт	[0.5, 1.6]	[0.3, 2.0]			
bbyy	[0.5, 1.7]	[0.4, 1.9]			
4b resolved	[-0.5, 6.1]	[-0.3, 7.2]			
4b boosted	_	[-0.4, 8.2]			
Multilepton	[-0.1, 4.7]	-			
bbll	[-2.1, 9.1]	-			
Combination	[0.6, 1.4]	[0.6, 1.5]			
ATLAS + CMS	-26/+29				

 ~26% precision for **k**_^=1

HH results - k_{λ} precision

- the shape of the EWSB potential
- assumption about the form of the potential is generally required:
 - dim-6 EFT Ο
 - dim-8 EFT Ο
 - logarithmic Ο
 - exponential Ο

<u>Measuring the Higgs self-coupling alone is insufficient to fully determine or constrain</u>

To provide model-independent conclusions on fundamental questions, such as whether the EWSB transition is first-order (a key element for electroweak baryogenesis) an

- The light blue delimits the area where a first order phase transition would be possible in a dimension 6 EFT.
 - 2σ full exclusion is reached at 3
 ab⁻¹ for the EFT dim 6 FOPT
 inducing potentials

Rare Top decays

- Top quark is the heaviest mass of the SM
 - privilege connection to the scalar sector Ο
 - exploring potential to the new physics Ο

- Two main projections are explored:
 - tttt production Ο
 - tty, ttZ production 0

*Might be the definitive top results for a some time (FCC might not run at the top pole)

17

ttt production

- very rare process ... is highly sensitive to new physics effects
- for this study

Final states with two same-charge leptons or at least three leptons are considered

	Projected experimental precision
_	in S2 is significantly smaller than
	the current uncertainty on the
	SM theoretical cross-section
	at 3 ab-1 the expected
	uncertainty is can be reduced to
	6%
_	

tty and ttZ

- tty, ttZ provides a powerful probe for poter
 SMEFT
- p_{yT} and p_{ZT} are particularly sensitive to EFT moments of the top quark

tty, ttZ provides a powerful probe for potential new physics effects within the framework of the

 p_{yT} and p_{ZT} are particularly sensitive to EFT parameters related to the electroweak dipole

FCC-project

FCC-ee

ee collider

FCC-ee has four phases:

- Near Z peak (91 GeV)
- Near WW threshold (163 GeV)
- Near ZH threshold (230 GeV)
- Near tt threshold (365 GeV)

Project	IP	Z-pole (91.2 GeV)	WW (160 GeV)	Higgs (230- 250 GeV)	Top Ge
FCC-ee	4	205 ab ⁻¹ 4 year	19 ab-1 2 year	11 ab-1 3 year	3 (5 y

FCC-hh

pp collider

FCC-hh has three baselines:

- 84 TeV (14T Magnet)
- 100 TeV (17T Magnet)
- 120 TeV (20T Magnet)

Project	IP	Higher Energy
FCC-hh	2	84.6 TeV: 30 ab⁻¹ 100 TeV: 30 ab ⁻¹ 120 TeV: 12 ab ⁻¹

LEP3 program

ee collider

LEP3 has three phases:

- Near Z peak (91 GeV)
- Near WW threshold (163 GeV)
- Near ZH threshold (230 GeV)

Project	IP	Z-pole (91.2 GeV)	WW (160 GeV)	Higgs (230- GeV)
LEP3	2	53 ab-1 5 years	5 ab ⁻¹ 4 years	2.5 ab ⁻¹ 6 years

Linear collider

ee collider

Linear colliders have three phases:

- Near ZH threshold 250 GeV
- Near ttH and ZHH threshold 550 GeV
- Near vvHH threshold 1-3 TeV

Clic:

Near top threshold 365 GeV

Project	IP	Z-pole (91.2 GeV)	WW (160 GeV)	Higgs (230-250 GeV)	Top (365 GeV)	Higher Energy
Linear colliders	1	0.07 ab ⁻¹ 1 year		2 ab ⁻¹ 3 years	CLIC: 4.4 ab ⁻¹ 10 years	550 GeV: 8 ab ⁻¹ 1.5 TeV: 4 ab ⁻¹ 10 years

		-			_	_	_	_	_	_	_
•	-	-	-	-	-	-	-	-	-	-	-
								7	-	_	_
								_	_	_	_
								1	1	-	-
								_	-	-	-
									-	-	-
								1	1		-
	_							-	-	-	-
				•							
	C				١						
))	1	ļ						
				1							
								J			
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
				_	_	_	_	_	_		
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	7			-	-	-	-	-			
	١										
	١										
	1	f	-	-	-	-	-	-	-	-	-
		I									
			١								
				۱							
				J							
					_	/					
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
	_	_	_	_	_	_	_	_	_	_	_
				-	-						
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-
				-	-	-	-	-			
	-	-	-	-	-	-	-	-	-	-	-
	_	-	-	-	-	-	-	_	_	-	-
	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-		-		-	-	-	-
								-			
								-		-	
								-			
								-			
						- - - -					
					- - - -						
				- - - - -	- - - -						
				- - - - -	- - - - -			- - - -			
	- - - - -			- - - - -					- - - - -		
					- - - - -						
								- - - - -			
								- - - - -			

Hadron electron collider:

- 1st phase with concurrent operation of electron-hadron and hadronhadron collisions, followed by
- 2nd phase of electron-hadroncollisions only
- Serves as a bridge between HL-LHC and the next future project

Project	IP	
LHeC	1	1TeV

Higher Energy

operational for 6 years

Muon collider

Muon-muon collisions

- Offers a compact, high-energy (~10 TeV) collider combining:
- The energy reach of proton colliders
- The precision of lepton colliders

Project	IP	
Muon Collider	1	

Project	IP	Z-pole (91.2 GeV)	WW (160 GeV)	Higgs (230-250 GeV)	Top (365 GeV)	Higher Energy
FCC-ee	4	205 ab ⁻¹ 4 year	19 ab ⁻¹ 2 year	11 ab ⁻¹ 3 year	3 ab-1 5 year	_
FCC-hh	2					84.6 TeV: 0.6 ab year /IP
LEP3	2	53 ab ⁻¹ 5 years	5 ab ⁻¹ 4 years	2.5 ab ⁻¹ 6 years		
Linear colliders	1	0.07 ab ⁻¹ 1 year		2 ab ⁻¹ 3 years	CLIC: 4.4 ab ⁻¹ 10 years	550 GeV: 8 ab 1.5 TeV: 4 ab ^{-:} 10 years
LHeC	1					1 TeV for 6 yea
Muon Collider	2					10 TeV: 1.1 ab ⁻ 8 year

- Updated projections for the sing the Zy and μ coupling
- Updated for the HH studies:
 - \circ 30% precision on the kA determination
 - \circ exclude FOPT at 2σ for dim6 operators

Updated projections for the singleH channels, massive improvement on

ination operators

- Updated top analyses
- on the SM assumptions

Many more details in <u>Christian's</u> and <u>Michele's</u> contributions

Prospects of several rare decays that can serve as an indirect constraint

ttt production

- tttt production sensitive to the top-quark Yukawa coupling
- production)

top-quark Yukawa coupling also affects the ttH process (background for tttt

A limit on y_{t} is ~1.5 is obtained in the best scenario

ttt production

- tttt production sensitive to the top-quark Yukawa coupling
- top-quark Yukawa coupling also affects the ttH process (background for tttt production)

- Upper limit on y_t are performed leaving the ttH yield floating in the fit, and parametrizing ttH events as a function of k_{t}
- Constrain comes mainly from ttH, limit on $y_{t} < 0.15$ is obtained in the

A minimal extension of the Standard Model (SM) involves the inclusion of a new real scalar singlet, S

$$V(\Phi,S) = -\mu_H^2 |\Phi|^2 + \lambda_H |\Phi|^4 + b_1 S - \frac{\mu_S^2}{2} S^2 + \frac{b_4}{4} S^4 + \frac{a_2}{2} |\Phi|^2 S^2 + \frac{b_3}{3} S^3 + \frac{a_1}{2} |\Phi|^2 S^4 + \frac{b_3}{3} S^3 + \frac{a_1}{2} |\Phi|^2 S^4 + \frac{b_3}{3} S^3 + \frac{b_3}{3} S^3 + \frac{b_4}{3} |\Phi|^2 S^4 + \frac{b_4}{3} S^4 + \frac{b_4}$$

Effect of S:

- universal modifications of the Higgs boson couplings
- Higgs self-interactions
- The enriched scalar potential dynamics enables the possibility of a FOPT

the presence of an additional scalar state can decay into HH - > modified three- and four-point

- comprehensive set of precision measurements from both experiments
 - scalar decays into vector bosons (VV) and Ο HH
 - upper bounds on universal modifications to Ο Higgs couplings with SM particles provide + k_{λ}
- significant portion of the viable parameter space for this generic SM extension is excluded
- two hatched regions show the regions where a first order phase transition is possible

*more plots in backup

- The red and blue points show the area where a first order and a strong first order phase transition are possible
- 68% and 95% exclusion curves are displayed.
- Few possibilities for the first order phase transition

Not excluded area

