

PARALLEL 3 / NEUTRINOS AND COSMIC MESSENGERS

Cosmic Messengers

Aart Heijboer (Nikhef)

On behalf of the working group

Input from:

P-One #53, Icecube+Gen2 #236, KM3NeT #249, TAMBO #272, Pierre Auger Observatory #201, Ligo-Virgo-Kagra #122, Lisa #164, Atom Interferometry #37, Einstein Telescope #198 Precision cross-sections for advancing cosmic-ray physics #89, Astroparticle Physics European Consortium #276

Discussed Elsewhere:

- Dark Matter
- Atmospheric Neutrinos
- CMB/Cosmology

23-27 JUNE 2025 Lido di Venezia

- Probe extreme astrophysical environments: cosmic accelerators – driven by black holes, or BSM sources & relics
- Access highest energy scales (10²⁰ eV)

Gravitational waves

Cosmic rays

DIDIDIO

• Large length/time scales: rare processes

Introduction: messengers and connections

- Field started with cosmic rays, now measured up to 10²⁰ eV
- Since 2013: diffuse cosmic neutrino flux
- Connection expected and suggested by same energy in flux
- Same sources?

Introduction: Known sources..

- GW: many events detected; conjunction with other messengers is rare
- Gamma rays: many sources (Fermi, HESS, LHAASO) EM/hadronic origin
- CR: 4σ sigma (post trial) for excess from Cen A at E> 2.8 10¹⁹ eV
- Neutrinos: most 'IceCube' neutrinos unassociated first exceptions: Blazar TXS 0506+056, Galaxy NGC 1068, Galactic plane

Many (common) sources still to be found. Much astro- and particle- physics to be done

(charged) Cosmic Rays

Cosmic rays

Below ~PeV: Direct detection from space.

- Understand particle abundances, in particular anti-matter
 - From dark-matter decay
 - Primordial
- AMS, CALET (ISS), DAMPE (satellite), HELIX, GAPS (balloon)
- Future: HERD (China Space Station), TIGER-ISS
- Direct connection to collider physics: XSCRC community #89: Understanding the data requires precise cross-section measurements: LHCb-SMOG, Alice, LHCf, AMBER (COMPASS), NA61/SHINE(#171) (NA49), n-TOF

Example: anti-protons in AMS

Cosmic rays

Highest energies:

- Observe airs-shower by surface detectors, fluorescence and radio.
- Telescope Array & Pierre Auger Observatory [#201]
 (Large European component)
- Future: Global cosmic ray observatory (GCOS) & GRAND

Goals:

- Probe cosmic accelerators at the highest energies
- pp cross-section at √s=50 TeV.
- Understand composition / GZK cutoff → neutrinos?
- Experiments also sensitive to UHE neutrinos and gamma's

Physics of Air Showers :

- Modeling hadron-air and nucleus-air interactions (muon puzzle)
- Crucial link to LHC: TOTEM, Faser, SND, FPF, #19, #23, #63 and fixed target: (e.g. NA61/SNINE, n-TOF).
- Benefit from LHC run with light ions, such as p-O; see also strong interactions WG

Neutrinos

- Straight line : identify source
- Smoking gun of CR acceleration (>GeV)
- Unabsorbed: probe inside dense objects

Cosmic Neutrinos

Cosmic Neutrinos

Supernova neutrinos

If Supernova in our (or nearby) Galaxy:

- Large signals in Hyper-Kamiokande, Dune, Juno
- HK:@ 10 kPc
 - 55-90k events in HK
 - ~degree localization
- Additional detections IceCube, KM3NeT and others.
- Additional pointing via timing of networked detectors (SNEWS network)

Diffuse supernova neutrino background is messenger of star formation history and (astro) physics.

- 2.3 sigma hint in Super-Kamiokande ~20 MeV
- Looking forward to discovery of DSNB in the next decade (HK, Juno)

Cosmic Neutrinos

IceCube (#236)

- Main observatory now and over past decade with strong European involvement.
 - Discovery of Cosmic Neutrino's 2013,
 - First Multi-messenger Blazar
 - First steady point source: Active Galaxy NGC 1068
 - Glashow resonance neutrino
 - Galactic contribution.
- Next : Upgrade (Jan '26)
 - Lower Energy threshold to ~1 GeV: oscillations
 - Recalibration to retroactively improve the data!
- Vision for future: Gen-II
 - x 10 volume at high E
 - Extend energy range with radio array for Ultra-high E.

KM3NeT (#249)

- European Collaboration with 2 observatories
 - ORCA : Oscillations in GeV regime
 - France, 7 Mt, Neutrino mass ordering (not this talk)
 - ARCA: Astronomy TeV-PeV (and above),
 - Italy, 1 Gton; (same as IceCube; better angular precision)
 - Excellent view of galactic center at relevant energies.
 - Recent discovery: Highest energy neutrino
- Under construction: 20% of total; producing science
- Completion of the two detectors around 2030

Global neutrino telescopes

- Use Canadian deep sea network
- Aim for multi-km³
- Explorer under construction

• 7.5 – 30 km3 / 21-55k Modules

- 0.5 km³ and growing, running
- Confirms Cosmic IceCube flux (25 up-going cascades over bg=6)

Global neutrino telescopes

particle physics cosmic neutrinos

... one example for IceCube gen-II

Flavour ratio of neutrinos

- Caries information on source production mechanism...
- And is sensitive to rare BSM processes during propagation.

Other science with neutrinos includes

- Indirect Dark matter searches
- Cross-sections up to sqrt(s) ~ FCC

Cosmic Neutrinos

The highest energies v

Method	Energy range	Principle	Experiments Past present and future
Ground-based air shower	10 PeV – EeV	v_{τ} interact in earth or mountain, detect τ air shower	Auger, TA, GRAND, Trinity, TAMBO, BEACON
Radar in ice	10 PeV – EeV	Bounce radar off cascade ionization trail in ice	RET
Radio in ice	100 PeV – EeV+	Detect radio signal from cascades in Ice.	ARA, ARIANA, RNO-G, IceCube-gen2 radio
Space-based air showers	EeV+	Look from for optical or radio from air showers with satellites or balloons	ANITA, PUEO, EUSO- SPB2, POEMNA
Lunar detection	EeV-ZeV	Moon is target; detect radio signal	NuMoon, LUNASKA, RESUN, <mark>SKA</mark>

Adapted from 'Discovering the neutrino sky ', Lu Lu, Cern courier

PAST, RUNNING, PROPOSED

The highest energy v: projects

- Current best limits from IceCube & Auger
- One neutrino from KM3NeT
- Next: RNO-G & PUEO

Further future

- Proposals to improve current sensitivity by 2 orders of mag.
- ~guaranteed to see neutrinos
- cosmogenic neutrinos very likely

Photons

Photons

- Many observatories from radio to gamma-ray and a lot of data coming in the next years.
- Indirect Dark Matter detection
- Directly related to cosmic accelerators : Gamma
 - Cosmic accelerators HAWK Lhaaso, Hess, Magic, Veritas, soon: CTA
 - Galactic sources up to PeV energies; hadronic origin?
- Photon spectrum at *all wavelengths* is crucial for multi-messenger modeling of cosmic accelerators
- Rely crucially gamma and x-ray satellites now: Fermi, Swift, 2027 : HERD, Cosi

Photons

- Many observatories from radio to gamma-ray and a lot of data coming in the next years.
- Indirect Dark Matter detection
- Directly related to cosmic accelerators : Gamma
 - Cosmic accelerators HAWK Lhaaso, Hess, Magic, Veritas, soon: CTA
 - Galactic sources up to PeV energies; hadronic origin?
- Photon spectrum at *all wavelengths* is crucial for multi-messenger modeling of cosmic accelerators
- Rely crucially gamma and x-ray satellites now: Fermi, Swift, 2027 : HERD, Cosi

Gravitational waves

Gravitational waves

Detections so far

Pulsar timing arrays

- Evidence of nHz stochastic background in multiple experiments
- Compatible with SMBHBs.. or from primordial universe.
- Future upgrades expected, SKA.

Ligo-Virgo-Kagra

- Detectors working as one collaboration
- Since 2015: Hundreds of mergers of NS and BH
- Science includes: Strong-field tests of General relativity, discovery 20 Msun Black holes.
- O4 ongong, O5 in 2028

2035 and beyond

- Next Generation: cryogenic interferometers: order of magnitude improvement in 100 Hz range.
- For Europe next-generation means Einstein telescope; expected 2nd half the next decade.
- Ligo & Virgo have upgrade possibility in the meantime (Ligo A[#], Virgo_nEXT)
- 2035, Lisa will be launched, opening up the mHZ regime.

Atom interferometers

Observe same objects subsequently in Multiple detectors.

- Multi-purpose instruments (low-mass DM + GW); strong synergy with particle physics.
- Fill the gap between Lisa and ET. ~ 0.1 Hz
- Network 100 m instruments under construction with European participation (e.g. MIGA in France, PX46 LHC shaft at CERN).
- Vision: 1 km instrument operating by 2035. in conjunction with Lisa & ET (AION-km)
- Future: space-based (AEDGE)

GW Science reach

a selection

- Multi-messenger Astronomy
- Search for (exotic) compact objects
- Strong-field tests of gravity
- Cosmology; Cosmic strings, primordial black holes

Particle physics related

- Phase transitions in the early Universe Lisa probes EW-scale.
- Nuclear physics (QCD phase diagram..)
- Dark matter (e.g. affecting the GW in the source region)

Multi Messenger

Multi messenger

- Most powerful: combination of many messengers
- Only a couple of real multi-messenger events so far

TXS 0506+056 IceCube alert sent within 1 min Fast follow up (Fermi, Magic, many others)

Science, 361 (2018) 18 observatories

Multi messenger

- Most powerful: combination of many messengers
- Only a couple of real multi-messenger events so far

TXS 0506+056

conclusions

- Cosmic messengers of:
 - Extreme astrophysical environments
 - The highest energies
 - Possible new physics
- New observatories on the horizon with wealth of new science (SN background, new TeV neutrino sources, cosmogenic neutrinos, many (mHz) GW sources)
- Networks for Multi-messenger science drastically increases the science reach
- Strongly interconnected, and connected to (other) particle physics
 - Many interdisciplinary physics cases: neutron stars, x-sections for cosmic rays, dark matter searches, probing the early universe...
 - Desire & need for strong European collaboration: theory, computing, coordination & support