Neutrino cross sections

Open Symposium on the European Strategy for Particle Physics

Figure from the University of Edinburgh: Particle Physics Experiment

Ivan Esteban

On behalf of the Neutrinos and Cosmic Messengers WG

23rd June. 2025

Universidad del País Vasco

Luskal Herriko Unibertsitatea

Introduction

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

2/22

I must apologize that in this talk I have not done my duty. I have not really, in any sense, given you a summary talk of the conference; rather I have tried to discuss some of the main problems that can be settled in the future by using the high-energy neutrino beams. As it must be clear to all of you, much of the future of weak interactions lie in the study of the high-energy neutrino processes. These processes can, on the one hand, be used to study the basic properties of weak interactions, and, on the other hand, they enable us to probe the strong interactions through the measurements of the various matrix elements.

T. D. Lee, "Informal conference of experimental neutrino physics", 1965

Neutrinos only interact weakly,

- \Rightarrow Clean probes of weak interactions
- \Rightarrow Potential sensitivity to weaker-than-weak interactions
- \Rightarrow Unique probes of target structure
- ⇒ Abundantly produced in astro/cosmo: we need to know their interactions for SM and BSM!

Introduction

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

3/22

Formaggio, Zeller; "From eV to EeV: Neutrino Cross-Sections Across Energy Scales", arXiv:1305.7513

Big picture

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

Coherent Elastic ν eutrino Nucleus **S**cattering $\sigma \propto N^2$. well-understood cross section $\frac{\mathrm{d}\sigma^{\mathrm{SM}}}{\mathrm{d}E_R} = \frac{G_F^2 M}{8\pi} \left[2 - \frac{ME_R}{E_\nu^2} - \frac{2E_R}{E_\nu} + \left(\frac{E_R}{E_\nu}\right)^2 \right] \mathcal{Q}_W^2 |F(Q^2)|^2$ $Q_W \equiv N - (1 - 4\sin^2\theta_W)Z$

But low E_{ν} (\lesssim 50 MeV) and low nuclear recoils (\lesssim keV, the lower the better)

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

2 Physics program

Within the SM,

. . .

- Key process for supernova explosions
- Nuclear (*neutron*) structure
- Weak mixing angle
- Neutrino charge radius
- Low-energy inelastic cross-sections for supernova detection elsewhere
- Supernova detection via NC
- Reactor monitoring

Plus a strong BSM program (NSI, light mediators, neutrino EM properties, dark sectors...) \Rightarrow Joachim's talk.

Ivan Esteban, University of the Basque Country

Neutrinos and Cosmic Messengers Working Group

/22 Neutron distribution in nuclei

Cadeddu et al; arXiv:2102.06153

$$Q^2 = 2ME_R + \mathcal{O}(E_R/M)$$

Measurement only possible with neutrinos (Y axis) or parity-violating electron scattering (X axis). Dominated by statistics+energy reconstruction (*Quenching Factor*) uncertainties.

Beyond a test of first-principles calculations, it can be related to the energy of isospin-asymmetric matter, key for the equation of state of neutron-rich matter including neutron stars.

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

/22 Weak mixing angle

De Romeri et al; arXiv:2211.11905

Cadeddu et al; arXiv:2102.06153

Future: competitive determinations of θ_W potentially possible with $\mathcal{O}(50kg)$ Ge (low threshold, "low" N/Z)

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

8/22 Neutrino charge radius

Atzori Corona et al; arXiv:2501.18550

Future: measurement of θ_W potentially possible with $\mathcal{O}(50kg)$ Ge (low threshold, "low" N/Z)

Ivan Esteban, University of the Basque Country

Neutrinos and Cosmic Messengers Working Group

9/22 Future: "explosion" of proposals

Experiment	Neutrino source	Detector material	Deployed?	Reference
COHERENT	Pion-decay-at-rest	Nal, 3500 kg	3/7 modules deployed	COHERENT input
COHERENT	Pion-decay-at-rest	Liquid Ar, 750 kg	Cryostat under commissioning	COHERENT input
COHERENT	Pion-decay-at-rest	Cryogenic Csl, 10 kg (low threshold)	No	COHERENT input
COHERENT	Pion-decay-at-rest	Ne, 20 kg	No	COHERENT input
Captain Mills	Pion-decay-at-rest	Ar, 10 ton	Commissioning last year	arXiv:2105.14020
		Csl, 22.5 kg; Si, 1 kg; Xe, 20 kg;		
ESS	Pion-decay-at-rest	Ge, 7 kg; Ar, 10 kg; C ₃ F ₈ , 10 kg	No	arXiv:1911.00762
		(large $ u$ flux)		
SuperCDMS	Solar	Si, 3.7 kg; Ge, 25 kg	Commissioning	Proceedings
RES_NOVA	Solar	Pb, 2.4 ton-465 ton	No	arXiv:2004.06936
CYGNUS	Solar	He+CF ₄ , 15 kg–1500 kg	No	arXiv:2404.03690
BULLKID	Solar	Si, ~kg	Demonstrator commissioned	arXiv:2209.14806
CONUS100	Reactor	Ge, 100 kg	No	CONUS input
CONNIE upgrade	Reactor	Si, 1 kg–10 kg (low threshold)	No	CONNIE input
MINER	Reactor	Ge, 1.5 kg; Si, 10 g	Engineering runs done	arXiv:1609.02066
NEON	Reactor	Nal, 13.3 kg	Yes	arXiv:2204.06318
NUCLEUS	Reactor	Al ₂ O ₃ , CaWO ₄ ; 10 g–1 kg (low threshold)	Yes	arXiv:2211.04189
Ricochet	Reactor	Ge, \sim kg (low threshold)	Yes	arXiv:2111.06745
SBC	Reactor	Ar, 10 kg	Prototype under construction	arXiv:2101.08785
NUXE	Reactor	Xe, 10 kg–100 kg	No	Ni et al, 2021
PALEOCCENE	Reactor	Different materials, 10 g–1 kg (exploits defect formation, low threshold)	No	arXiv:2203.05525

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

10/22 Challenges

Some measurements (e.g., absolute rate at pion-decay-at-rest sources) are already systematics-limited. On top of scaling,

Can we reduce flux uncertainties in pion-decay-at-rest? [E.g., D₂O detector, arXiv:2104.09605]

 How can we reduce Quenching Factor and energy calibration uncertainties? [Converts nuclear recoil to observed energy, critical for interpreting reactor results. E.g., phonons, defect formation, calibration by radiative neutron capture CRAB]

Can we reduce energy thresholds (stats+sensitivity to some physics)? [E.g., Si]

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

11 / 22

Neutrino Scattering Theory Experiment Collaboration, arXiv:2503.23556

Key systematic for oscillation measurements (Mark's talk): $N_{evt} = \phi \times \sigma \times P_{osc}$ But also rich in nuclear effects

- Nuclear initial state
- Multi-nucleon effects
- Final-state interactions
- Quark-hadron duality

. . .

Most of this program is explored with electrons, but neutrinos are complementary.

²² Nuclear physics

Clearly a lot to be learned about the nuclear initial state and final-state interactions!

Can we disentangle from, e.g., flux uncertainties and unknown neutrino energy? [Neutrino tagging? See Mark's talk for SBN@CERN/nuSCOPE]

Ultimately, how much can we link with ab-initio calculations?

Ivan Esteban, University of the Basque Country

Neutrinos and Cosmic Messengers Working Group

MINERvA, arXiv:2203.08022

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

^{3/22} Quark-hadron transition

Low- Q^2 corrections to DIS (quark-hadron duality). Compared to electrons, neutrinos probe a different current.

T. Katori, talk in "Neutrino-Nucleus Interactions in the Standard Model and Beyond"

2 Collider neutrinos

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

The Dawn of Collider Neutrino Physics

Elizabeth Worcester

Brookhaven National Laboratory, Upton, New York, US

July 19, 2023 • Physics 16, 113

The first observation of neutrinos produced at a particle collider opens a new field of study and offers ways to test the limits of the standard model.

Google Earth, imagery (c)2023 Maxar Technologies, map data (c)2023; CERN; adapted by APS/Alan Stonebraker

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

5/22 Collider neutrinos

A rich physics program

- Unexplored energy regime
- ν_{τ} , $\bar{\nu}_{\tau}$: lepton flavor universality, systematic for ν_{τ} appearance searches in oscillation experiments

QCD: charm hadrons contribute significantly. Forward charm production can be measured, linked to low-x PDFs (relevant for, e.g., Higgs physics or to test QCD saturation) and prompt atmospheric neutrinos (relevant for, e.g., astrophysical neutrino searches).

Similarly, forward strangeness can be measured, linked to the **muon puzzle** in cosmic-ray physics.

SND@HL-LHC

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

5%

1%

 ν_{μ} and $\overline{\nu}_{\mu}$ cross-section

SND@HL-LHC 16/22

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

- All 6 flavors
- Tagged neutrino beam ($\mathcal{O}(600)$) events)
- PDFs at low Bjorken-x

Ivan Esteban, University of the Basque Country

Neutrinos and Cosmic Messengers Working Group

17/22 FASER upgrade

(Illustration plot)

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

/22 FPF

- FLArE: LAr TPC
- FASERv2: emulsion
- FASER2: multipurpose (tracker, cal, magnet, μ)
- FORMOSA: plastic scintillator for millicharged particles

Beyond TeV energies

Ivan Esteban, University of the Basque Country

Neutrinos and Cosmic Messengers Working Group

^{9/22} (Ultra-)High Energy astrophysical neutrinos

(See Aart's talk)

Beyond TeV energies

Ivan Esteban, University of the Basque Country

Neutrinos and Cosmic Messengers Working Group

0/22 (Ultra-)High Energy astrophysical neutrinos

Earth absorption modifies angular distribution \Rightarrow handle on cross section

lceCube, arXiv:2011.03560

Beyond TeV energies

Ivan Esteban, University of the Basque Country

Neutrinos and Cosmic Messengers Working Group

(Ultra-)High Energy astrophysical neutrinos

Earth absorption modifies angular distribution \Rightarrow handle on cross section

IE, Prohira, Beacom; arXiv:2205.09763

Outlook

Ivan Esteban, University of the Basque Country Neutrinos and Cosmic Messengers Working Group

22 / 22

- Neutrino interactions offer a unique window
 - MeV (CE ν NS): precision probe of weak interactions (and beyond) and nuclear structure
 - GeV (LBL): nuclear initial state, quark-hadron duality...
 - TeV (collider): connection to astroparticle physics, low-x QCD, saturation...
 - PeV, EeV (astrophysical): beyond laboratory reach
- And the future looks bright!
 - **MeV** (CE ν NS): high-statistics, low-systematics proposals
 - GeV (LBL): Mark's talk!
 - TeV (collider): HL-LHC
 - PeV, EeV (astrophysical): Aart's talk!
- But there are challenges
 - **MeV** (CE ν NS): e.g.,we have to reduce systematics
 - GeV (LBL): e.g., can we disentangle from flux and energy uncertainties?
 - **TeV** (collider): e.g., can we be ready for HL-LHC?
 - **PeV, EeV** (astrophysical): e.g., how many events?