## IMPERIAL

# **Neutrino Oscillation Physics** Mass Splittings, Mixing & CP violation

ESPPU Open Symposium | Venice | 23 June 2025

Mark Scott on behalf of the Neutrinos and Cosmic Messengers WG 23/06/2025

## **Neutrino Oscillation** Mass splittings and mixing

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
$$0 \qquad \sqrt{\frac{1}{6}} \sqrt{\frac{1}{3}} \sqrt{\frac{1}{2}} \sqrt{\frac{2}{3}}$$

- Mixing between neutrino mass and flavour eigenstates described by PMNS matrix
  - Large off-diagonal elements
  - Three mixing angles and one phase
- Three mass eigenstates gives two mass splittings
  - Mass ordering is unknown





1

## **Neutrino Oscillation** Mass splittings and mixing

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$0 \qquad \sqrt{\frac{1}{6}} \sqrt{\frac{1}{3}} \sqrt{\frac{1}{2}} \sqrt{\frac{2}{3}}$$

• Mixing between neutrino mass and flavour eigenstates described by PMNS matrix

1

3

- Large off-diagonal elements
- Three mixing angles and one phase
- Three mass eigenstates gives two mass splittings
  - Mass ordering is unknown

Imperial College London

Neutrino Oscillation, Mixing and Mass Splitting



#### NuFit 6.0, JHEP 12 (2024) 216

22/06/2025

|   |        |                                                 | Normal Ordering (best fit)             |                             |  |
|---|--------|-------------------------------------------------|----------------------------------------|-----------------------------|--|
|   |        |                                                 | bfp $\pm 1\sigma$                      | $3\sigma$ range             |  |
| ו | ta     | $\sin^2 	heta_{12}$                             | $0.308\substack{+0.012\\-0.011}$       | $0.275 \rightarrow 0.345$   |  |
| - | c da   | $	heta_{12}/^{\circ}$                           | $33.68^{+0.73}_{-0.70}$                | $31.63 \rightarrow 35.95$   |  |
|   | herio  | $\sin^2 	heta_{23}$                             | $0.470\substack{+0.017\\-0.013}$       | 0.435  ightarrow 0.585      |  |
|   | lsou   | $	heta_{23}/^{\circ}$                           | $43.3^{+1.0}_{-0.8}$                   | $41.3 \rightarrow 49.9$     |  |
|   | K atr  | $\sin^2 	heta_{13}$                             | $0.02215\substack{+0.00056\\-0.00058}$ | $0.02030 \to 0.02388$       |  |
|   | h S    | $\theta_{13}/^{\circ}$                          | $8.56^{+0.11}_{-0.11}$                 | $8.19 \rightarrow 8.89$     |  |
|   | 24 wit | $\delta_{ m CP}/^{\circ}$                       | $212^{+26}_{-41}$                      | $124 \rightarrow 364$       |  |
|   | IC     | $\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV^2}}$    | $7.49_{-0.19}^{+0.19}$                 | $6.92 \rightarrow 8.05$     |  |
|   |        | $\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$ | $+2.513^{+0.021}_{-0.019}$             | $+2.451 \rightarrow +2.578$ |  |

See also F. Capozzi et al., Phys. Rev. D 104, 8, 083031

P. F. de Salas et al., JHEP 02, 071 (2021)

• Impressive progress in measuring oscillation parameters

4

#### NuFit 6.0, JHEP 12 (2024) 216

| <b>Neutrino Oscillation</b> | on |
|-----------------------------|----|
| Current knowledge           |    |

- Impressive progress in measuring oscillation parameters
- Most parameters measured with few percent precision (note, have taken 1/6 of 3σ range as error for dCP and theta23)
- Open questions:
  - Octant of  $\theta_{23}$
  - Mass ordering
  - CP violation?
  - Value of  $\delta_{CP}$
  - Unitarity of PMNS
  - Other new physics?

Imperial College London

Neutrino Oscillation, Mixing and Mass Splitting

atmospheric data  $\operatorname{SK}$ IC24 with

|                                                 | Normal Or                              | Normal Ordering (best fit)         bfp $\pm 1\sigma$ $3\sigma$ range $0.308^{+0.012}_{-0.011}$ $3.7\%$ $75 \rightarrow 0.345$ |                          |
|-------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                 | bfp $\pm 1\sigma$                      |                                                                                                                               | $3\sigma$ range          |
| $\sin^2 	heta_{12}$                             | $0.308\substack{+0.012\\-0.011}$       | 3.7%                                                                                                                          | $75 \rightarrow 0.345$   |
| $\theta_{12}/^{\circ}$                          | $33.68^{+0.73}_{-0.70}$                | 2.1%                                                                                                                          | $63 \rightarrow 35.95$   |
| $\sin^2 	heta_{23}$                             | $0.470\substack{+0.017\\-0.013}$       | 5.0%                                                                                                                          | $35 \rightarrow 0.585$   |
| $	heta_{23}/^{\circ}$                           | $43.3^{+1.0}_{-0.8}$                   | 3.1%                                                                                                                          | $1.3 \rightarrow 49.9$   |
| $\sin^2 	heta_{13}$                             | $0.02215\substack{+0.00056\\-0.00058}$ | 2.3%                                                                                                                          | $30 \rightarrow 0.02388$ |
| $	heta_{13}/^{\circ}$                           | $8.56^{+0.11}_{-0.11}$                 | 1.3%                                                                                                                          | $19 \rightarrow 8.89$    |
| $\delta_{ m CP}/^{\circ}$                       | $212^{+26}_{-41}$                      | 16.4%                                                                                                                         | $24 \rightarrow 364$     |
| $\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV^2}}$    | $7.49\substack{+0.19 \\ -0.19}$        | 2.5%                                                                                                                          | $92 \rightarrow 8.05$    |
| $\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$ | $+2.513^{+0.021}_{-0.019}$             | 0.8%                                                                                                                          | $51 \rightarrow +2.578$  |

See also F. Capozzi et al., Phys. Rev. D 104, 8, 083031

5

P. F. de Salas et al., JHEP 02, 071 (2021) 22/06/2025

## **Long-baseline Oscillation**

### **Current experiments**



- T2K and NOvA providing tightest constraint on  $\Delta m^2_{32}$  and  $\sin^2 \theta_{23}$
- Demonstrated sensitivity to MO and  $\delta_{CP}$  at the  $1-2\sigma$  level
- T2K sensitivity for increased exposure of  $1 \times 10^{22}$  POT, 99% median confidence limits on CPV ( $\delta_{CP} = \frac{-\pi}{2}$ )

## **Long-baseline Oscillation**

### **Current experiments**



- T2K and NOvA providing tightest constraint on  $\Delta m^2_{32}$  and  $\sin^2 \theta_{23}$
- Demonstrated sensitivity to MO and  $\delta_{CP}$  at the  $1-2\sigma$  level
- T2K sensitivity for increased exposure of  $1 \times 10^{22}$  POT, 99% median confidence limits on CPV ( $\delta_{CP} = \frac{-\pi}{2}$ )
- NOvA (beam expected Fall 2026) sensitivity for increased anti-neutrino beam exposure,  ${\sim}2\sigma$  for MO

## **Neutrino Oscillation**

## Where are we going?

#### Long-baseline experiments

- Hyper-Kamiokande
- DUNE

#### Solar/Reactor experiments

- JUNO
- SNO+

#### **Atmospheric neutrino experiments**

- KM3NeT-ORCA
- IceCube Upgrade

#### **Proposed experiments**

- ESSNuSB
- THEIA
- SuperCHOOZ

- Factor 20-100 more events than T2K/NOvA, limited by systematics
- Mass ordering and CP violation discovery potential
- Unprecedented precision on  $\sin^2\theta_{12}$  and mass splittings
- Mass ordering sensitivity
- Megaton scale detectors
- Sensitive to  $\sin^2 \theta_{23}$ ,  $\Delta m^2_{32}$  and mass ordering
- Beam development and new technologies
- Long-baseline, solar and reactor sources
- Construction/operation would start after 2032

Imperial College London

## **Neutrino Oscillation Experiments** Hyper-Kamiokande and DUNE

#### Hyper-Kamiokande

- 188 kt fiducial volume
- Water Cherenkov detector
- 295km baseline
- 0.6 GeV neutrino energy







#### DUNE

- 20kt (Phase 1) + 20kt (Phase 2) fiducial volume
- Liquid Argon TPC
- 1300km baseline
- 2-3 GeV neutrino energy







Imperial College London

## **Neutrino Oscillation Experiments** IceCube and KM3NeT-ORCA

#### IceCube

- Mega-tonne scale Cherenkov detector at South Pole
- Atmospheric (and astrophysical) neutrinos
- Higher density DeepCore, with Upgrade being installed



17m

1450m

2450m

2100m

2450m

Instrumented Depth

2140m

2440m

#### **KM3NeT-ORCA**

- Mega-tonne scale Cherenkov detector in Mediterranean Sea
- Atmospheric (and astrophysical) neutrinos
- 24 strings deployed









## **Neutrino Oscillation Experiments** JUNO

- 20 kt liquid scintillator detector
- 20" and 3" PMT systems
- Reactor anti-neutrinos, 50 km baseline
- Near detector, TAO, for precise reactor flux





#### **Future experiment timeline**



## **DUNE Phasing and Exposure**

- DUNE Phase 1 consists of:
  - 10kt Far Detector Module 1, 10kt Far Detector Module 2, both liquid argon
  - Suite of near detectors, inc. liquid argon detector
  - 1.2 MW neutrino beam
- DUNE Phase 2 consists of:
  - Far Detector Modules 3 and 4, assumed to be 10kt each of liquid argon in sensitivity studies
  - More Capable Near Detector (MCND), assumed to be gaseous argon TPC
  - Beam power upgraded to 2.3MW
- DUNE performance submitted as a function of kt-MW-years exposure, plot on right converts to year since beam start (nominally 2031)



## Future precision on $\sin^2\theta_{23}$ and $\Delta m^2_{32}$



- For long-baseline experiments precision on  $\sin^2\theta_{23}$  depends on true value
  - Hyper-K illustrates this on left
- Both DUNE and HK can achieve comparable precision on disappearance parameters
  - Best precision on  $\sin^2\theta_{23}$
- JUNO provides best precision on  $\Delta m^2_{3l}$
- Multiple experiments with different systematics

## **Precision measurements from JUNO**

- Plan to measure fast oscillation on top of larger oscillation
  - Relies on precise energy calibration



- After 6 years predict:
  - 0.2% precision on  $\Delta m^2_{31}$
  - 0.3% precision on  $\Delta m^2_{21}$
  - 0.5% precision on  $\sin^2 \theta_{12}$



## **Future determination of mass ordering**



• Experiment sensitivity versus time, width from uncertainty on other oscillation parameters

• Primarily  $\sin^2 \theta_{23}$ 

#### • Early 2030s:

- Many experiments with  $3\sigma$  sensitivity
- Multiple neutrino sources and methods to determine MO
- DUNE has  $5\sigma$  sensitivity shortly after beam starts
  - Assumes  $\sin^2 \theta_{23} = 0.58$ , expect less sensitivity for smaller values

## Mass ordering **Combinations with JUNO**

- Many experiments with  $\sim 3\sigma$  MO sensitivity expect results in early 2030
- Combination of long-baseline experiments with JUNO provides significant enhancement, up to  $5\sigma$



## **CP Violation sensitivity**

## Hyper-K and DUNE

- Hyper-K expects  $5\sigma$  CPV sensitivity for 50% of values of  $\delta_{CP}$  after ~5 years beam exposure
- 75% of values at  $3\sigma$  after ~7 years



- DUNE expects  $5\sigma$  CPV sensitivity for 50% of values of  $\delta_{CP}$  with 600 kt-MW-years exposure (~10 years)
- 75% of values at  $3\sigma$  with 1000 kt-MW-years (~14 years)



## Precision on $\delta_{CP}$ Hyper-K and DUNE

- Performance of both experiments similar
  - Approximately 6° if  $sin(\delta_{CP}) = 0$
  - If  $\delta_{CP} = \pm \pi/2$  DUNE achieves ~19° with 1000-kt-MW-years while Hyper-K achieves ~20° after 10





## **Over-constraining PMNS parameters**

## **Combining experiments**

#### Majority of measurements today assume PMNS is unitary

- Current data (green) do not really constrain unitarity
- Combining future experiments (JUNO, IceCube, DUNE and HK on right) provides significantly greater power
- Study consistency of PMNS parameters between experiments
  - HK and DUNE will approach reactor precision on  $\sin^2 \theta_{13}$

#### This is a generic search for new physics

- BSM covered in more detail in talk by J. Kopp
- Requires detailed understanding of experiment uncertainties and correlations between experiments

## Multiple experiments will provide robust determination of CPV, MO and PMNS parameters

20



## **Neutrino Oscillation**

## **Systematic Uncertainties**

Complex and detailed topic – cannot address in 30-minute talk, but critical for future experiments to achieve their design goals

#### JUNO

 3%/VE energy resolution needed for MO determination and (perhaps) atmospheric mass splitting, solar mixing parameter and mass splitting are independent of this

#### IceCube/KM3NeT-ORCA

- Atmospheric neutrino flux has relatively large uncertainties, but largely cancel in ratio of up/down, electron/muon, neutrino/antineutrino
- Neutrino interaction cross section important for precise mixing parameter and mass splitting
- Detector systematics are also challenging

#### Hyper-Kamiokande/DUNE

- Need near detectors, in-situ and external measurements to control neutrino flux and cross section
- Detector systematics assumed to be well controlled, will be challenging

## **Neutrino Flux Prediction** NA61/SHINE Experiment

- Plays an essential role in constraining neutrino flux uncertainties coming from unknown hadron production cross sections – strong support from community seen in ESPPU submissions
- Propose to continue measurements after CERN Long Shutdown 3
  - LBNF and T2K/HK replica targets
  - Low energy protons on nitrogen to constrain atmospheric flux
  - Mesons and protons on aluminium, water, iron and other targets
    - Understand secondary
       interactions in neutrino beam lines



#### Imperial College London Neutrino

#238 ESPPU

## **Neutrino cross sections in long-baseline experiments** Neutrino scattering ~1 GeV

- At GeV-scale neutrino event generators must model both interaction of neutrino with a nucleon and the impact of the surrounding nucleus on this process
  - Final state interactions, collective nuclear excitations, hadron-quark transition, low-W hadronization...
- Models do reasonably well for quasi-elastic interactions



W. Filali et al, Phys. Rev. D 111, 032009

## **Neutrino cross sections in Long-baseline Experiments** Neutrino scattering ~1 GeV

- At GeV-scale neutrino event generators must model both interaction of neutrino with a nucleon and the impact of the surrounding nucleus on this process
  - Final state interactions, collective nuclear excitations, hadron-quark transition, low-W hadronization...
- Models struggle to describe other data samples well (one example below)



- T2K experiment developing interaction model and uncertainties for neutrinos with energies from 0.3 - 2 GeV for Carbon and Oxygen targets
  - Hyper-K benefits from this
- DUNE uses argon target, beam neutrino energy mainly above 1 GeV
  - No existing data on argon in this energy range
  - Some data from SBN program at lower energy

## **Neutrino cross sections in long-baseline experiments** Impact on oscillation physics – T2K

- Neutrino event generator cross section predictions differ by 50% at low energy transfer (right)
- T2K study:
  - Fit simulated data from CRPA model at near and far detector,
  - Extract oscillation parameters
  - Compare to expected value from nominal sensitivity fit
- Observed shift in best-fit value of  $\Delta m^2_{32}$ 
  - Shift as large as total systematic error on  $\Delta m^2_{32}$
  - Added as additional error





## Neutrino cross sections in Long-baseline Experiments

Arb. norm

0.

0.2

ENIE 10a

(5

Ratio w.r.

## **Impact on oscillation physics - DUNE**

- DUNE has wide-band beam at higher energy
  - Modelling of neutrino energy v. important
  - Need to measure hadronic part of neutrino interaction as well as leptonic
  - Mis-modelling the amount of energy that is not detected can have significant impact

Proportion of  $E_{\nu}$  reconstructed within 10% of the true  $E_{\nu}$  differs by more than 20%

GENIE 10a GENIE 10b GENIE 10c
 CRPA SuSAv2 NEUT
 NuWro



**Imperial College London** 

## **Neutrino cross sections measurements**

## Current and upcoming experiments

Many experiments with significant European involvement are currently collecting data, or plan to start soon – almost all have collected data on a variety of targets with both neutrinos and antineutrinos

#### T2K Near Detectors - #106 ESPPU

- Carbon and oxygen target, 0.6 GeV peak neutrino energy
- ND280 Upgrade (NP07) currently collecting data, new upgrade proposed for mid-2030s (ND++)

#### MINERvA - #149 ESPPU

- Many target nuclei from He to Pb, not argon
- Energies from 1 10 GeV, driver of model development

#### Short Baseline Neutrino Programme

- ICARUS (NP01, <u>#226 ESPPU</u>), MicroBooNE, SBND
- Millions of events with large (>40k) number of electron neutrinos
- Argon target, peak energy 0.8 GeV
  - ICARUS also plans to measure NuMI beam at higher neutrino energies

27

## **Neutrino cross sections measurements** Possibilities at CERN

CERN support for neutrino physics recognised as critical to success of oscillation program Broad interest in potential neutrino facilities at CERN

#### nuScope (formerly SBN@CERN) - #101 ESPPU

- Combination of ENUBET (NPO6) instrumented decay region and NuTAG fast tracking to reconstruct kinematics of neutrino production from hadron decays
- 1% uncertainty on neutrino fluxes, measure "true" neutrino energy with 1% error for tagged events
- Technology under development, but most already demonstrated
- Proton requirement compatible with SHiP, 1.4x10<sup>19</sup> POT over 4 7 years

#### **Requires large (500 tonne, ~1 ProtoDUNE)**, capable detector

- O(1M) muon neutrino events
- ~80% tagging efficiency if timing performance (0.04ns beamline, 0.3ns for interaction in detector) achieved Imperial College London

Neutrino Oscillation, Mixing and Mass Splitting



## **Neutrino cross sections measurements** Possibilities at CERN

Muon beams provide large electron neutrino fluxes, can provide both neutrinos and antineutrinos and the neutrino beam can be well characterised by measuring the muons

#### NuSTORM - #200 ESPPU

- Target station, pion transfer line, then muon storage ring
- Neutrinos from both muons and initial pions
- Possible to form bespoke fluxes

#### Neutrinos from high brightness muon beams - <u>#251 ESPPU</u>



- Looking at neutrino physics from first stage of muon collider at CERN
- Target station, cooling followed by initial stages of LINAC to 1.5 GeV/c (or higher for DUNE)
- Requires development of muon cooling

## **Neutrino cross sections measurements** Possibilities at CERN summary

Table shows areas to compare each proposal – non-exhaustive

- Electron neutrino cross section limiting systematic for Hyper-K CPV sensitivity, significant for  $\delta_{CP}$  precision and octant sensitivity
- Neutrino vs antineutrino cross section limiting systematic for Hyper-K CPV sensitivity
- Neutrino energy knowledge of neutrino energy and relation to reconstructed variables limiting systematic for precision measurements and CPV at DUNE

|                               | nuSTORM | nuScope     | Muon beam |
|-------------------------------|---------|-------------|-----------|
| $\sigma_{\nu_e/\nu_\mu}$      | +       | +           | +         |
| $\sigma_{\ \overline{ u}/ u}$ | +       | Under study | +         |
| $E_{m  u}$                    | _       | +           | _         |
| Readiness                     | +       | +           | ×         |
| Muon collider<br>R&D          | +       | ×           | +         |

- All can measure  $v_e$  flux with 1% uncertainty
- Muon beams have well known  $\bar{\nu}$  flux
- nuScope tagging, muons have tunable beam
- High brightness muon beam requires cooling R&D
- Muon beams develop technology for muon collider

## **Neutrino oscillation ecosystem**

All experimental submissions highlight the importance of European support – both at CERN and elsewhere All highlighted the benefit from the Neutrino Platform, and request **recognition and support for the Neutrino Platform** 

- Played key role in T2K Near Detector Upgrade (NP07), BabyMIND (NP05)
- Hosted Proto-DUNEs (NP02, NP04)
- Direct participation in T2K and DUNE
- Hyper-K electronics testing (NP08)
- Many others

A number of submissions highlighted the benefit from both the CERN neutrino experimental and theoretical groups:

- CERN (and Europe) is in a unique with large contributions to Hyper-K and DUNE, as well as JUNO, KM3NeT and IceCube
- Opportunity to be a nexus for cross-experiment work, driving future discovery

## **Neutrino oscillation, mixing and mass splitting** Summary

Field is starting to measure mixing parameters and mass splittings with %-level precision

#### Many new experiments under construction or starting to collect data

- Expect MO to be known at  $3\sigma$  by 2030, confirmed at  $5\sigma$  by DUNE in 2034
- Discovery of CP violation possible by 2031, but Nature may not be kind, and it could be much harder
- Sub-% precision on most oscillation parameters by late 2030s limited by systematics

#### Strong support in Europe for wide programme of experiments

- Hyper-K, DUNE, JUNO, KM3NeT-ORCA, IceCube, SNO+, ESSNuSB, SuperCHOOZ, NA61
  - CERN Neutrino Platform
- Neutrino beams at CERN can reach <1% precision on flux and cross sections
- Opportunity for cross-experiment research hub in Europe

## IMPERIAL

# Thank you

## **Bibliography**

- T2K: <u>#106 ESPPU</u>, <u>L. Munteanu, NuINT '24</u>
- NOvA: P. Vahle, NOvA PAC '24
- DUNE: <u>#118 ESPPU</u>, arXiv:2408.12725, arXiv:2103.13910, C. Wilkinson, Workshop on Neutrino Event Generators
- JUNO: <u>#36 ESPPU</u>, arXiv:2405.18008, A. Abusleme et al 2022 Chinese Phys. C 46 123001
- KM3NeT-ORCA: <u>#249 ESPPU</u>,
- Hyper-K: <u>#238 ESPPU</u>, <u>arXiv:2505.15019</u>
- <u>NuFit 6.0, JHEP 12 (2024) 216</u>
- IceCube: <u>#236 ESPPU</u>, <u>J. Weldert, WIN 2025</u>
- MINERvA <u>#149 ESPPU</u>
- ICARUS <u>#226 ESPPU</u>
- Neutrinos from high brightness muon beams - <u>#251 ESPPU</u>
- NuSTORM <u>#200 ESPPU</u>
- nuScope (formerly SBN@CERN) <u>#101 ESPPU</u>
- W. Filali et al, <u>Phys. Rev. D 111, 032009</u>
- <u>S. Ellis et al, PHYS. REV. D 102, 115027 (2020)</u> Neutrino Osciliation, Mixing and Mass Splitting



• T2K and NOvA providing tightest constraint on  $\Delta m^2_{32}$  and  $\sin^2 \theta_{23}$ 

## **Long-baseline Oscillation**

### **Current experiments**



• T2K and NOvA providing tightest constraint on  $\Delta m^2_{32}$  and  $\sin^2 \theta_{23}$ 

• Demonstrated sensitivity to MO and  $\delta_{CP}$  at the  $1 - 2\sigma$  level

## Precision on $\sin^2 \theta_{23}$ and $\Delta m_{32}^2$ Hyper-K and DUNE

- Precision on  $\sin^2 \theta_{23}$  depends on true value
  - Both DUNE and HK can achieve better than  $4 \times 10^{-3}$  precision for  $\sin^2 \theta_{23} = 0.58$  (current precision ~2 ×  $10^{-2}$ )
- Precision on  $\Delta m_{3l}^2$ 
  - DUNE: 1% 0.4% with 100 – 1000 kt-MW-years exposure
  - HK: 1% 0.4% with 1 10 years exposure
  - Current precision 1.5%



#### **HK Sensitivity Paper**

# Precision on $\sin^2 \theta_{23}$ and $\Delta m_{32}^2$ IceCube and ORCA $\square$

- Both IceCube and KM3NeT-ORCA expect to achieve 3 - $5\sigma$  MO sensitivity around 2033
  - Depends on value of  $\sin^2\theta_{23}$
- Good precision on  $\sin^2 \theta_{23}$  and  $\Delta m^2_{3l}$  achievable
  - Better than current limits by small factor
  - Less precise than DUNE, Hyper-K and JUNO ( $\Delta m_{3l}^2$ )



## **Measurements from JUNO**

- Plan to measure fast oscillation on top of larger oscillation
  - Relies on precise energy calibration
- Predict  $3 5\sigma$  sensitivity to MO after 7 - 20 years operation
- After 6 years predict:
  - 0.2% precision on  $\Delta m^2_{31}$
  - 0.3% precision on  $\Delta m^2_{21}$
  - 0.5% precision on  $\sin^2\theta_{12}$



JUNO Data Taking Time [days]

## Mass Ordering Hyper-K and DUNE

• DUNE expects  $5\sigma$  MO sensitivity for all values of  $\delta_{CP}$  with 70 kt-MW-years exposure (~3 years of Phase I)



 Hyper-K expects 4 – 6σ MO sensitivity after 10 years exposure, combining beam and atmospheric neutrinos

