

PARALLEL 7 / BSM

Symmetries for the Higgs

On behalf of the PPG BSM WG

23-27 JUNE 2025 Lido di Venezia

Tim Cohen (CERN/UO), Nathaniel Craig (UCSB), Aurelio Juste (IFAE)

Symmetries for the Higgs

A superconducting analogy

What is the BCS theory of electroweak symmetry breaking?

Higgs potential becomes *calculable* in symmetry extensions of the Standard Model (supersymmetry, global symmetry, ...)

Ginzburg-Landau Theory Low-Tc Superconductors (BCS) $F = \alpha |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \frac{1}{2m} |(-i\hbar \vec{\nabla} - g\vec{A})\psi|^2 + \dots$

Symmetries for the Higgs

Supersymmetry

Supersymmetry Sparticles m

≲4π/G

Global symmetry

Global symmetry Partner particles m

≲4π/G

Spanning BSM Signal Space

	γ	l	τ	j	t	W	Z	h	Eτ
γ	H,A						Н		X٥١
l		RPV	RPV	RPV	RPV				Ĩ
τ			H,A	RPV	RPV				τ
j				H,A	RPV				Ĩ
t					H,A				ĩ
W						Н		H±	Χ±
Z							Н	A	ĥ
h								Н	ĥ
Er									h

Symmetry extensions of SM are comprehensive signal generators

- disappearing tracks
- *R*-hadrons
- HSCPs
- *displaced photons*

Practicalities

- Mass reach in simplified models for representative splittings
- Update FCC-hh sensitivity using collider-reach

Top partners in composite/little Higgs. Quantification of Higgs mass prediction.

Reconcile vast landscape of possibilities with uniform treatment of experiments.

 Starting point: Snowmass 2021 SUSY projections [arXiv:2209.13128] Populate missing benchmarks w/collider-reach from 13 TeV

Additionally:

Light-flavor Squarks

ą̃→qχ₁º (large Δm)-

```
q̃→qχ₁º (Δm= 50 GeV)
```

Compressed squarks extrapolated from ATLAS 13 TeV expected limits w/ collider-reach

0

MuC-10 reach from higher-order? [2502.20443]: 0.1 ab for $m_{\tilde{g}} = 2$ TeV

0000

Gluinos

Wino/Bino

(Pure higgsino w/ SM splittings in DM benchmarks)

Predicting the Higgs Mass

Measured Higgs mass provides a sharp target for supersymmetry.

In some tension with natural expectations (i.e. quartic changes logarithmically with stop mass while vev changes quadratically). *Clear target independent of naturalness.*

This plot: SUSYHD $m_h = 125 \text{ GeV} \pm \text{SM errors}$ $\mu = 1 \text{ TeV}, \tilde{m}_{\text{other}} = 5 \text{ TeV}, \tan \beta = 20$

HL-LHC: single & pair: ATLAS extrapolation

MuC 10: single: [2502.20443]; pair: kinematic threshold

Fermionic Top Partners

FCC-hh: single: LO MG5 + ATLAS extrapolation; pair: rescale 100 TeV FCC-hh (c.f. 10 TeV from ATLAS extrap).

Width: [2502.20443]

Takeaways & Next Steps

- Dramatic improvement in sensitivity relative to LHC, with expected complementarity of strengths between high-energy hadron and lepton colliders.
- Significant coverage of natural parameter space for EWSB, and meaningful coverage of target provided by by $m_h = 125$ GeV.
- As signal generators for BSM, SUSY coverage indicates a factor of ~10 improvement in mass reach for broad classes of new physics.
- Next steps: Further improvement of fermionic top partner study (esp. FCC-hh), potential coverage of more exotic SUSY scenarios (disappearing tracks, R-hadrons, HSCPs, ...) depending on resources.

Grazie mille!