Favour benchmarks for BSM

ESPPU Symposium, Venice June 2025

Sophie Renner & Lesya Shchutska

European Strategy for Particle Physics

Flavour for BSM

Flavourful models provide a natural target for next generation experiments

Exploring new interactions...

From LHC, strong constraints on flavour-universal new physics BSM models which couple preferentially to heavier generations are less well-tested

Solving Standard Model puzzles...

Any model that explains origin of SM Yukawas will induce flavour effects (at some scale) Models for Higgs naturalness often connected to 3rd generation

Investigating experimental anomalies...

e.g. long-standing discrepancy in $R_{D^{(*)}}$ observables

Benchmark models

Leptoquarks Vector U_1 leptoquark with couplings to left handed 3rd generation quarks and 3rd or 2nd generation leptons

Tauonic leptoquark is motivated as a possible origin of the $R_{D^{(*)}}$ anomalies

Phenomenology: new QCD-charged states with flavour-specific couplings

Flavour-deconstructed gauge models $G_{12} \times G_{3+\text{Higgs}} \rightarrow G$ symmetry breaking

Motivated by SM flavour puzzle: final breaking step in larger deconstruction models which generate hierarchical masses and couplings Phenomenology: TeV-mass gauge bosons with flavour non-universal couplings

Top flavour changing neutral currents (FCNCs)

New opportunities for precision top flavour at future experiments Projections for $t \rightarrow c$ and $t \rightarrow u$ transitions in terms of coefficients of effective operators

Tauonic leptoquark

Vector U_1 leptoquark with couplings to left handed 3rd generation quarks and leptons

All sensitivities are at 95%

$$\mathscr{L}_{U_1} \supset \frac{\mathscr{g}_U}{\sqrt{2}} \beta_{i\tau} \bar{\mathcal{Q}}_L^i \gamma_\alpha L_L^3 U_1^\alpha + h \cdot c \cdot \qquad \begin{array}{l} \text{with} \\ \beta_{b\tau} = 1, \ \beta_{s\tau} = 0.1 \end{array}$$

Comments:

- Strong indirect projections from FCC-ee Z pole and flavour programs
- Complementary direct sensitivity from hadron and muon colliders (direct FCC-hh bound is at ~12 TeV)

Tauonic leptoquark

Vector U_1 leptoquark with couplings to left handed 3rd generation quarks and leptons

All sensitivities are at 95%

$$\mathscr{L}_{U_1} \supset \frac{g_U}{\sqrt{2}} \beta_{i\tau} \bar{Q}_L^i \gamma_\alpha L_L^3 U_1^\alpha + h \cdot c \cdot \qquad \text{with} \\ \beta_{b\tau} = 1, \ \beta_{s\tau} = 0.1$$

Comments:

- Strong indirect projections from FCC-ee Z pole and flavour programs
- Complementary direct sensitivity from hadron and muon colliders (direct FCC-hh bound is at ~12 TeV)

Inputs and references:

Belle II $B \rightarrow K \tau \tau$: "Projections for key measurements in heavy flavour physics" ATLAS, Belle II, CMS, LHCb

HL-LHC $pp \rightarrow \tau \tau$: Naive extrapolation to 14 TeV 6ab-1 from current <u>ATLAS</u>, <u>CMS</u> results (shown in grey). Work is underway on an official projection

HL-LHC $pp \rightarrow U_1 U_1$: Naive extrapolation to 14 TeV 6ab-1 using <u>Collider Reach tool</u> from current best limit (ATLAS)

FCC-ee Z pole: from <u>"New Physics Through Flavor Tagging at FCC-ee"</u>, Greljo, Tiblom, Valenti

 $R_{D^{(*)}}$ fit: from <u>"New Physics Through Flavor Tagging at FCC-ee"</u>, Greljo, Tiblom, Valenti (using HFLAV combination) FCC-ee $B_s \rightarrow \tau \tau$: from <u>"Flavored Circular Collider: cornering New Physics at FCC-ee via flavor-changing</u>" processes", Allwicher, Isidori, Pesut

Muonic leptoquark

Vector U_1 leptoquark with couplings to left handed 3rd generation quarks and 2nd generation leptons

All sensitivities are at 95%

$$\mathscr{L}_{U_1} \supset \frac{g_U}{\sqrt{2}} \beta_{i\mu} \bar{Q}_L^i \gamma_\alpha L_L^2 U_1^\alpha + h \cdot c \cdot \qquad \begin{array}{l} \text{with} \\ \beta_{b\tau} = 1, \ \beta_{s\tau} = 0.1 \end{array}$$

Comments:

Not such a large increase in precision at FCC-ee for B_s → μμ as compared to B_s → ττ (c.f. previous slide)
Complementary direct sensitivity from hadron and muon colliders, and indirect sensitivity from Drell-Yan
STILL TO BE DONE: FCC-hh extrapolation of pp → μμ

Muonic leptoquark

Vector U_1 leptoquark with couplings to left handed 3rd generation quarks and 2nd generation leptons

All sensitivities are at 95%

$$\mathscr{L}_{U_1} \supset \frac{g_U}{\sqrt{2}} \beta_{i\mu} \bar{Q}_L^i \gamma_\alpha L_L^2 U_1^\alpha + h \cdot c \cdot \qquad \begin{array}{l} \text{with} \\ \beta_{b\tau} = 1, \ \beta_{s\tau} = 0.1 \end{array}$$

Comments:

Not such a large increase in precision at FCC-ee for B_s → μμ as compared to B_s → ττ (c.f. previous slide)
Complementary direct sensitivity from hadron and muon colliders, and indirect sensitivity from Drell-Yan
STILL TO BE DONE: FCC-hh extrapolation of pp → μμ

Inputs and references:

LHC $pp \rightarrow \mu\mu$: from the reinterpretation in "<u>New physics in</u> $b \rightarrow s\mu\mu$: FCC-hh or a muon collider?" Azatov et al HL-LHC $B_s \rightarrow \mu\mu$: "Projections for key measurements in heavy flavour physics" ATLAS, Belle II, CMS, LHCb FCC-ee $B_s \rightarrow \mu\mu$: "Prospects in flavour physics at the FCC", FCC PED, and "Precision Tests in $b \rightarrow sll (l = e, \mu)$ at FCC-ee" Bordone, Cornella, Davighi HL-LHC $pp \rightarrow U_1U_1$: Naive extrapolation to 14 TeV 6ab-1 using <u>Collider Reach tool</u> from current best limit (<u>ATLAS</u>)

FCC-hh $pp \rightarrow U_1 U_1$: Naive extrapolation to 85 TeV 30ab-1 using <u>Collider Reach tool</u> from current best limit (<u>ATLAS</u>)

MuC 3 & 10 TeV $\mu\mu \rightarrow jj$: likelihood from David Marzocca & IMCC, based on "<u>New physics in $b \rightarrow s\mu\mu$ </u>: FCC-hh or a muon collider?" Azatov et al, and <u>"Learning from radiation at a very high energy lepton collider"</u> Chen et al

Deconstructed hypercharge model

Heavy Z' with flavour-dependent couplings

$$\mathscr{L} \supset g_{Z'}^{ij} Z'_{\mu} Y_{\psi} \bar{\psi}_{i} \gamma^{\mu} \psi_{j} + g_{Z'}^{H} Y_{H} Z'_{\mu} H^{\dagger} i \overleftrightarrow{D}^{\mu} H$$
$$g_{Z'}^{ij} = g_{Y} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta) \qquad g_{Z'}^{H} = g_{Y} \cot \theta$$

Deconstructed hypercharge model

Heavy Z' with flavour-dependent couplings

$$\mathscr{L} \supset g_{Z'}^{ij} Z'_{\mu} Y_{\psi} \bar{\psi}_{i} \gamma^{\mu} \psi_{j} + g_{Z'}^{H} Y_{H} Z'_{\mu} H^{\dagger} i \overleftrightarrow{D}^{\mu} H$$
$$g_{Z'}^{ij} = g_{Y} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta) \qquad g_{Z'}^{H} = g_{Y} \cot \theta$$

- Flavour phenomenology depends on misalignment between gauge and flavour basis: here we assume up-alignment
- Large indirect effects in EWPOs and Drell Yan processes
- NB Z pole sensitivities depend strongly on theory error assumptions! This is taking the "aggressive SM" errors from EW PPG, with bkg and MC errors in quadrature

- Light grey shaded region is where $\delta m_h^2 > 1$ TeV (i.e. naturalness-disfavoured) - STILL TO BE DONE: $ee \rightarrow ff$ at LC

Inputs and references:

FCC-ee $B_s \rightarrow \mu\mu$: "Prospects in flavour physics at the FCC", FCC PED, and "Precision Tests in

 $b \rightarrow sll (l = e, \mu)$ at FCC-ee" Bordone, Cornella, Davighi

FCC-ee Z pole "Prospects in electroweak, Higgs and top physics at the FCC", FCC PED & theory errors from EW PPG

LEP3 Z pole <u>"LEP3: A high luminosity electron-positron Higgs boson factory in the LHC tunnel"</u>, Anastopoulos et al, & theory errors from EW PPG

HL-LHC $pp \rightarrow ff$: from Ben Stefanek, calculated using <u>HighPT package</u>

FCC-ee $e^+e^- \rightarrow ff$: likelihood from Ben Stefanek, based on <u>"New Physics Through Flavor Tagging at FCC-</u> ee", Greljo, Tiblom, Valenti

MuC 3 & 10 TeV $\mu\mu \rightarrow ff$: likelihood from David Marzocca & IMCC, based on <u>"Learning from radiation at a</u>" very high energy lepton collider" Chen et al

Deconstructed $SU(2)_{I}$ model

Heavy W' with flavour-dependent couplings

Li, Ma, <u>1981</u> Davighi et al <u>2312.13346</u> Capdevila et al <u>2401.00848</u>

 $\mathscr{L} \supset g_{W'}^{ij} W_{\mu}^{'I} \bar{\psi}_{Li} \gamma^{\mu} \sigma^{I} \psi_{Lj} + g_{W'}^{H} Y_{H} Z_{\mu}^{'} H^{\dagger} i \overleftrightarrow{D}^{\mu} \sigma^{I} H$ $g_{W'}^{ij} = g_{L} \operatorname{diag}(-\tan \theta, -\tan \theta, \cot \theta) \qquad g_{W'}^{H} = g_{L} \cot \theta$

- All comments from previous slide also apply here
- Overall sensitivity greater than hypercharge model since couplings set by g_L rather than g_Y
- Combination of indirect searches at FCC-ee have capacity to probe nearly all of natural region at 95%

Inputs and references:

- FCC-ee $B_s \rightarrow \mu\mu$: "Prospects in flavour physics at the FCC", FCC PED, and "Precision Tests in
- $b \rightarrow sll (l = e, \mu)$ at FCC-ee" Bordone, Cornella, Davighi
- FCC-ee Z pole <u>"Prospects in electroweak, Higgs and top physics at the FCC", FCC PED</u> & theory errors from EW PPG
- LEP3 Z pole <u>"LEP3: A high luminosity electron-positron Higgs boson factory in the LHC tunnel"</u>, Anastopoulos et al, & theory errors from EW PPG
- HL-LHC $pp \rightarrow ff$: from Ben Stefanek, calculated using <u>HighPT package</u>
- FCC-ee $e^+e^- \rightarrow ff$: likelihood from Ben Stefanek, based on <u>"New Physics Through Flavor Tagging at FCC-</u> <u>ee",</u> Greljo, Tiblom, Valenti
- MuC 3 & 10 TeV $\mu\mu \rightarrow ff$: likelihood from David Marzocca & IMCC, based on <u>"Learning from radiation at a</u>" very high energy lepton collider" Chen et al
- FCC-ee tau LFUV: <u>"Tau physics prospects at FCC-ee"</u>
 - 10

Top quark flavour changing neutral currents

Projected sensitivities all at 95%

Sensitivity to $t \to c$ and $t \to u$ transitions in terms of coefficients of SMEFT operators (in <u>LHC TOP WG conventions</u>)

Comments

For simplicity, have not separated different lepton flavours $(l, e = e, \mu)$

STILL TO BE DONE: add motivated targets for BSM scenarios, update FCC-hh if possible (this is for 10ab-1 at 100 TeV)

Inputs and references

HL-LHC: <u>"Opportunities in flavour physics at the HL-LHC and HE-LHC"</u>

CLIC: "Top-Quark Physics at the CLIC Electron-Positron Linear Collider"

ILC: "The International Linear Collider: Report to Snowmass 2021"

CEPC: "Flavor Physics at CEPC: a General Perspective" and "Probing the top quark flavor-changing couplings at CEPC", Shi, Zhang

Muon collider: "Top quark flavor changing couplings at a muon collider", Ake et al

FCC-ee: "<u>Top quark FCNC anomalous couplings at the future collider</u> FCC-ee", Khanpour et al

FCC-hh: "FCC CDR 2018"

LHeC: "Fingerprinting the Top guark FCNC via anomalous Ztg couplings at the LHeC", Behera et al & "Probing the Anomalous FCNC tqy Couplings at Large Hadron electron Collider" Turk Kahir et al

Takeaways and next steps

- at lepton and hadron colliders for flavour-motivated models
- flavour tests involving taus
- Yan processes at hadron and lepton colliders
- interpretations of top FCNCs in specific models, ...

Thank you!

Strong complementarity between flavour tests and direct & indirect sensitivity

BSM coupling predominantly to 3rd generation: sensitivity from Z pole and

BSM also coupling to light generations: strong indirect sensitivity from Drell-

Next steps: additional Drell-Yan sensitivities for FCC-hh and linear collider,