Quantum inspired ML on FPGA


http://boostlab.dfa.unipd.it/

{r/{ N Setting the stage '

In the following there won’t be

* Answers about what can Quantum Computers do for HEP!!]

* A review of Quantum inspire algorithms for HEP pipelines

* Guidelines on how to use FPGAs to control/simulate quantum
hardware -

This is only about

 Tensor Networks are “quantum” tools that can be used for
classification/selection and anomaly detection
* Their features make them promising models to be deployed
on resurces-limited contexts, notably first Trigger layers
e A case study of the deployment of TN as classifier for HEP
\ tasks is reviewed y

~

[1] See e.g. A. Di meglio et al. « Quantum Computing for High-Energy Physics: State of the Art and Challenges», PRX
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TN: collections of tensors with indeces
contracted in specific patterns

— convenient graphical representation

Rapresent/solve many-body quantum
entangled states, factorizing rank-N
tensors into smaller tensors

— allows linear scaling (vs exp.) on the number
of sites

— allows computation, by reducing number of
parameters and algo complexity

Expressivity of the TN tuned by the bond
dimenson

— the dimension of the index connecting one
tensor to the next

Several topologies are suitable for various
tasks

— Tree TN: the most general loopless
architecture
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&(N TN for (Q)ML .

 Being a network, a TN can be

trained as any other ML model. .
¢ Methodology: t

— A TN used as “weight tensor” W, /.T\T Network
acting as a classifier on the input dat:
{x} ,

— the sample {x} is encoded into a A = 0 8
feature map ¢(x) Vand Vs 7\ SN\

— the confidence for a certain label g is aAAAAAAA

Fg =W -px) S t
* Eventually, the TN architecture I A A e

encode the learned information G PTuTyu Ge PTe Te = PTs Tx Gk PTE Tk dp PTp Tp G
representing a quantum entangled

state.




TNAML workflow
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Embedding (Paralle.l) Prediction
Contraction
+ Different fields * Basis embedding * Calculate fidelity of + Scalar or vector out
(HEP, OD) * Spin or polynomial TTN state over data *Plug into loss
* High rate mapping * Embarrassingly function for

parallel operation optimisation




TN features

Linearity

Contractions are linear operation = Inference robustness against
hallucinations, eases computational representation

Compression (while learning)

bond dimensions optimized during training: reduction of number of
parameters by truncating the size of the hidden links with SVD.

Quantum correlations

remove redundant information by studying feature <,¢' ]0”"0""\1& >
correlation and highlighting the ones that are the ol — Mg
least correlated. b (W |y)

Von Neumann Entropy

asses the relevance of the learned information encoded in each TTN
bipartition = prune useless branches

S(pa) = —Tr[palogpa] = — Tr[pplog pg| = S(pB)




Inference on Hardware

FPGA programmed with
architecture-specific
firmware.

Software-trained weights
loaded on static RAM blocks
or hardcoded in firware.

Data to be classified
streamed to the FPGA.

Full contraction with the
TTN architecture.

Final probability is retrieved
for subsequent steps (e.g.
selection)

] - ® [
e . | o '@ ® ‘
¢ & 6 0 O ° ¢ 0
00000000
Tensor contraction is the base operation that needs
to be defined on FPGA: choose different degrees of

parallelization and iterate it for different layers.

o %

Digital Signal Processors (DSP) exploited for the
actual node contraction; just products and sums.




Case study

Consider datasets with increasing complexity
Start of with a couple of ML banchmarks

Main goal are HEP “standards”
— b/anti-b classification datasets from LHCb

* from A. Giannelle et al. «Quantum-inspired machine learning on high-energy
physics data» Nature, 2021. https://doi.org/10.1038/s41534-021-00443-w

— “hltdml” jet tagging dataset

* from Duarte et al. «Fast inference of Deep Neural Networks in FPGA for particle
Physics» https://arxiv.org/abs/1804.06913

Methodology and results described in:

— L. Borella et al. «Ultra-low latency quantum-inspired machine
learning predictors implemented on FPGA», arxiv:2409.16075



https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2409.16075

INFN Full parallel implementation

L=logz(N)

Maximize number of DSPs used and
minimize total algorithmic latency Q
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IN

[NEN Partial parallel implementation

o}

Lslogz)

Reuse some of the DSPs, with a )
resulting increase in latency
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TTN: latency vs input features
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Results

SW/HW Output Comparison
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Bond 2,41 [2,4,8] [2,48,8] [2,4,10,10]
dimensions

Classes 2 2 2 5
Accuracy 9% 77% 62% 73%
Memory 96B 768B 3kB 6 kB



Conclusions and Outlook

TN as a valid option to tackle ML tasks

TN’s features make them suitable for deployment in hardware
to achieve the ultrafast inference needed by HEP trigger
systems

Next steps:

— Test different TN topologies (MPS, MERA, PEPS etc.) and tasks.

— Move firmware programming to higher level languages (e.g. from
VHDL to HLS4ML).

— Check Hardware inference on Versal Al Engines.

Other applications
— Consider possibility of TN training on FPGA

— Simulation of quantum circuits
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