
1

Quantum inspired ML on FPGA

Marco Zanetti

University of Padova and INFN
BOOSTlab

http://boostlab.dfa.unipd.it/

Setting the stage

2

• Answers about what can Quantum Computers do for HEP[1]

• A review of Quantum inspire algorithms for HEP pipelines
• Guidelines on how to use FPGAs to control/simulate quantum

hardware

In the following there won’t be

This is only about
• Tensor Networks are “quantum” tools that can be used for

classification/selection and anomaly detection
• Their features make them promising models to be deployed

on resurces-limited contexts, notably first Trigger layers
• A case study of the deployment of TN as classifier for HEP

tasks is reviewed

[1] See e.g. A. Di meglio et al. «Quantum Computing for High-Energy Physics: State of the Art and Challenges», PRX

QUANTUM 5, 037001 (2024)

• TN: collections of tensors with indeces
contracted in specific patterns
– convenient graphical representation

• Rapresent/solve many-body quantum
entangled states, factorizing rank-N
tensors into smaller tensors
– allows linear scaling (vs exp.) on the number

of sites

– allows computation, by reducing number of
parameters and algo complexity

• Expressivity of the TN tuned by the bond
dimenson
– the dimension of the index connecting one

tensor to the next

• Several topologies are suitable for various
tasks
– Tree TN: the most general loopless

architecture

Tensor Networs and their usage

3

• Being a network, a TN can be
trained as any other ML model.

• Methodology:

– A TN used as “weight tensor” W,
acting as a classifier on the input data
{x}

– the sample {x} is encoded into a
feature map ϕ(x)

– the confidence for a certain label g is

𝑃𝑔 = 𝑊 ∙ 𝜑 𝑥

• Eventually, the TN architecture
encode the learned information
representing a quantum entangled
state.

TN for (Q)ML

4

TN4ML workflow

5

TN features

6

bond dimensions optimized during training: reduction of number of
parameters by truncating the size of the hidden links with SVD.

Compression (while learning)

remove redundant information by studying feature
correlation and highlighting the ones that are the
least correlated.

Quantum correlations

asses the relevance of the learned information encoded in each TTN
bipartition → prune useless branches

Von Neumann Entropy

Contractions are linear operation → Inference robustness against
hallucinations, eases computational representation

Linearity

• FPGA programmed with
architecture-specific
firmware.

• Software-trained weights
loaded on static RAM blocks
or hardcoded in firware.

• Data to be classified
streamed to the FPGA.

• Full contraction with the
TTN architecture.

• Final probability is retrieved
for subsequent steps (e.g.
selection)

Inference on Hardware

7

Tensor contraction is the base operation that needs
to be defined on FPGA: choose different degrees of
parallelization and iterate it for different layers.

Digital Signal Processors (DSP) exploited for the
actual node contraction; just products and sums.

• Consider datasets with increasing complexity

• Start of with a couple of ML banchmarks

• Main goal are HEP “standards”
– b/anti-b classification datasets from LHCb

• from A. Giannelle et al. «Quantum-inspired machine learning on high-energy
physics data» Nature, 2021. https://doi.org/10.1038/s41534-021-00443-w

– “hlt4ml” jet tagging dataset

• from Duarte et al. «Fast inference of Deep Neural Networks in FPGA for particle
Physics» https://arxiv.org/abs/1804.06913

• Methodology and results described in:

– L. Borella et al. «Ultra-low latency quantum-inspired machine

learning predictors implemented on FPGA», arxiv:2409.16075

Case study

8

https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://doi.org/10.1038/s41534-021-00443-w
https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2409.16075

Full parallel implementation

9

Maximize number of DSPs used and
minimize total algorithmic latency

Partial parallel implementation

10

Reuse some of the DSPs, with a
resulting increase in latency

Results: Latency and Resources

11

Latency

DSP usage

Results

12

• TN as a valid option to tackle ML tasks

• TN’s features make them suitable for deployment in hardware
to achieve the ultrafast inference needed by HEP trigger
systems

• Next steps:

– Test different TN topologies (MPS, MERA, PEPS etc.) and tasks.

– Move firmware programming to higher level languages (e.g. from
VHDL to HLS4ML).

– Check Hardware inference on Versal AI Engines.

• Other applications

– Consider possibility of TN training on FPGA

– Simulation of quantum circuits

Conclusions and Outlook

13

	Slide 1
	Slide 2: Setting the stage
	Slide 3: Tensor Networs and their usage
	Slide 4: TN for (Q)ML
	Slide 5: TN4ML workflow
	Slide 6: TN features
	Slide 7: Inference on Hardware
	Slide 8: Case study
	Slide 9: Full parallel implementation
	Slide 10: Partial parallel implementation
	Slide 11: Results: Latency and Resources
	Slide 12: Results
	Slide 13: Conclusions and Outlook

