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Setting the stage
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• Answers about what can Quantum Computers do for HEP[1]

• A review of Quantum inspire algorithms for HEP pipelines
• Guidelines on how to use FPGAs to control/simulate quantum 

hardware

In the following there won’t be

This is only about
• Tensor Networks are “quantum” tools that can be used for 

classification/selection and anomaly detection
• Their features make them promising models to be deployed 

on resurces-limited contexts, notably first Trigger layers
• A case study of the deployment of TN as classifier for HEP 

tasks is reviewed 

[1] See e.g. A. Di meglio et al. «Quantum Computing for High-Energy Physics: State of the Art and Challenges», PRX 

QUANTUM 5, 037001 (2024) 



• TN: collections of tensors with indeces 
contracted in specific patterns
– convenient graphical representation

• Rapresent/solve many-body quantum 
entangled states,  factorizing rank-N 
tensors into smaller tensors
– allows linear scaling (vs exp.) on the number 

of sites

– allows computation, by reducing number of 
parameters and algo complexity 

• Expressivity of the TN tuned by the bond 
dimenson
– the dimension of the index connecting one 

tensor to the next

• Several topologies are suitable for various 
tasks
– Tree TN: the most general loopless 

architecture

Tensor Networs and their usage
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• Being a network, a TN can be 
trained as any other ML model.

• Methodology:

– A TN used as “weight tensor” W, 
acting as a classifier on the input data 
{x}

– the sample {x} is encoded into a 
feature map ϕ(x)

– the confidence for a certain label g is 

𝑃𝑔 = 𝑊 ∙ 𝜑 𝑥

• Eventually, the TN architecture 
encode the learned information 
representing a quantum entangled 
state.

TN for (Q)ML
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TN4ML workflow
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TN features
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bond dimensions optimized during training: reduction of number of 
parameters by truncating the size of the hidden links with SVD. 

Compression (while learning)

remove redundant information by studying feature 
correlation and highlighting the ones that are the 
least correlated.

Quantum correlations

asses the relevance of the learned information encoded in each TTN 
bipartition → prune useless branches

Von Neumann Entropy

Contractions are linear operation → Inference robustness against 
hallucinations, eases computational representation

Linearity



• FPGA programmed with 
architecture-specific 
firmware. 

• Software-trained weights 
loaded on static RAM blocks 
or hardcoded in firware.

• Data to be classified  
streamed to the FPGA.

• Full contraction with the 
TTN architecture.

• Final probability is retrieved 
for subsequent steps (e.g. 
selection)

Inference on Hardware
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Tensor contraction is the base operation that needs 
to be defined on FPGA: choose different degrees of 
parallelization and iterate it for different layers.

Digital Signal Processors (DSP) exploited for the 
actual node contraction; just products and sums.



• Consider datasets with increasing complexity

• Start of with a couple of ML banchmarks

• Main goal are HEP “standards”
– b/anti-b classification datasets from LHCb

• from A. Giannelle et al. «Quantum-inspired machine learning on high-energy 
physics data» Nature, 2021. https://doi.org/10.1038/s41534-021-00443-w

– “hlt4ml” jet tagging dataset

• from Duarte et al. «Fast inference of Deep Neural Networks in FPGA for particle 
Physics» https://arxiv.org/abs/1804.06913

• Methodology and results described in:

– L. Borella et al. «Ultra-low latency quantum-inspired machine 

learning predictors implemented on FPGA», arxiv:2409.16075

Case study
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Full parallel implementation
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Maximize number of DSPs used and 
minimize total algorithmic latency



Partial parallel implementation
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Reuse some of the DSPs, with a 
resulting increase in latency



Results: Latency and Resources
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Latency

DSP usage



Results
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• TN as a valid option to tackle ML tasks

• TN’s features make them suitable for deployment in hardware 
to achieve the ultrafast inference needed by HEP trigger 
systems

• Next steps:

– Test different TN topologies (MPS, MERA, PEPS etc.) and tasks.

– Move firmware programming to higher level languages (e.g. from 
VHDL to HLS4ML).

– Check Hardware inference on Versal AI Engines.

• Other applications

– Consider possibility of TN training on FPGA

– Simulation of quantum circuits

Conclusions and Outlook
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