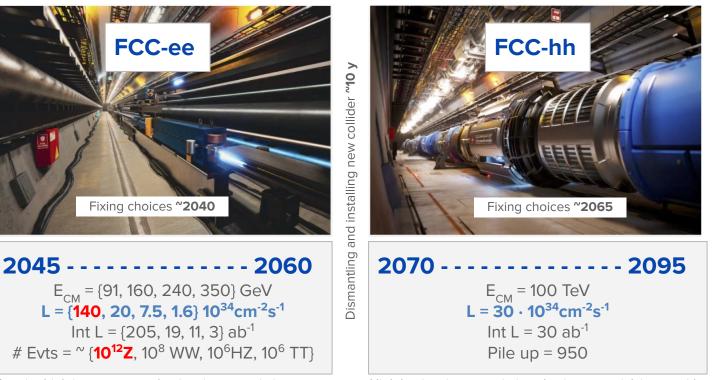


Software for PED studies


Estimating FCC computational needs from near term through the 2040s

2026 Update of European Strategy for Particle Physics Open Symposium, Venice Lido Jun 23, 2025 G Ganis, CERN-EP

The FCC project

High luminosity to maximise physics potential, in par with expectations

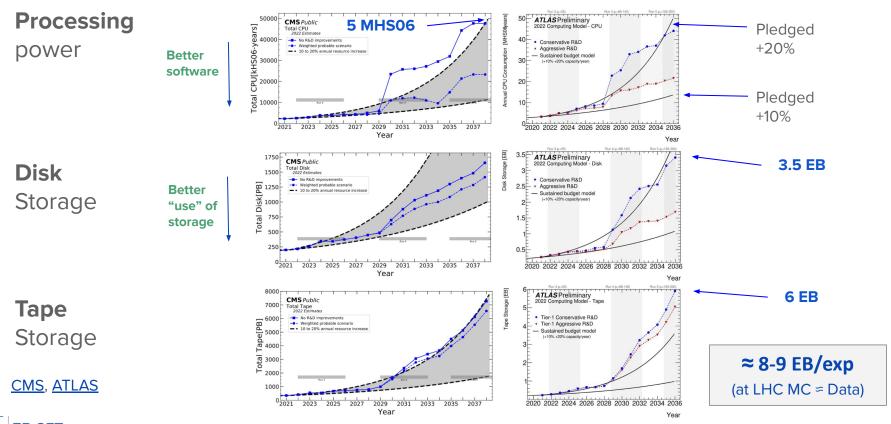
EP-SFT

Software Frameworks And Tools

Frontier high instantaneous luminosity to maximise physics potential, requiring a complex interaction region with 35" crossing angle

Context

The presentation addresses two questions raised during the FSR


Are adequate computing resources available for the current and next phase (pre-TDR)? Or: how many resources are needed for the FCC pre-TDR (2025-2027) studies?

How would the FCC-ee run in 2040's look like in terms of computing resources?

- Based on the results reported in the <u>Feasibility Study Report</u>, Vol 1, PED
 - Some updates followed subsequent discussions, in particular concerning missing processes and operation sequence
- Estimating the needs for computing resources requires knowledge about data structures, detectors, tools, etc, and statistical needs.
 - For a project with many moving targets we can only identify the relevant factors, for which we can make assumptions
- Focus on FCCee (no FCChh) offline needs (discussion for online/TDAQ just started)

Projections of resource needs of HL-LHC

EP-SFT Software Frameworks And Tools

Modeling FCCee needs: factors / assumptions

Workflows

- During the pre-TDR phase the main activities are
 - Analysis of benchmark cases, usually started with parametrized simulation, and followed by an increasing number of full sim+reco samples
 - Sub-detector development / algorithm design / optimization, starting with samples with particle guns, followed by event (enriched) samples of fully simulated events
- Event sizes, processing times
 - Detectors concepts far from being frozen, but **# of channels** \approx **1 G** (LHC \approx 100 M, LEP \approx 1 M)
 - Use reference detector for scaling: CLD, FCC version of the CLIC detector
 - Event sizes (leptonic-hadronic): parametrized 1.2-18 kB, full sim 0.16-2.3 MB
 - Processing time (leptonic-hadronic): parametrized 0.5-30 ms, full sim 1.6-23 s
- Statistics needs

EP-SFT

Software Frameworks And Tools

- Baseline assumption: **MC ~** expected data sample
 - Needs to be reviewed case by case, both for current studies and the eventual experiment running

Projections/detector - Z,WW,HZ,Top full nom stat (

Full nominal statistics ≈ order of magnitude of the data sample produced by one detector

Run	Process	N evts	De	lphes	Full S	imulation	Comments	
			Storage (PB)	Comp (HS06/3y)	Storage (PB)	Comp (HS06/3y)		3y ≈ pre-TDR
Z	qqbar	1500 G	12.5	2.2 k	1650	2 M	Resource	Sy pre-rbit
Nominal	⁺ ⁻	225 G	0.275	12	40	40 k	needs completely	
50 ab⁻¹ 1.5·10 ¹² Z	e+e- lumi	1200 G	1.9	64	250	200 k	dominated	
1.5.102	gg -> had	18 G	0.04	1.6	6	3 k	by the Z run	
W	WW	60 M	~10 ⁻³		0.075	72		
Nominal 5 ab ⁻¹	e+e- lumi	18 G	0.05	~1	6	3 k	Full	Wrt FSR Table 21,
0.6·10 ⁸ WW	gg -> had	2 G	~10 ⁻³	~0.1	1	300	simulation	added e+e- lumi
HZ	HZ	500 k	~10 ⁻⁵		~10 ⁻³	0.95	needs are	and
Nominal 2.7 ab ⁻¹	e+e- lumi	8 G	~10 ⁻²	~0.5	2	1.5 k	well in the	e+e-→yy →qq
0.6·10 ⁶ HZ	gg -> had	1.5 G	~10 ⁻³	~0.1	0.75	2.25	reach of todays	•••
Тор	ttbar	500 k	~10 ⁻⁵		~10 ⁻²	1.25	resources	
Nominal 0.8 ab -1	e+e- lumi	1 G	~10 ⁻³	~10 ⁻²	0.2	150		
0.5·10 ⁶ ttbar	gg -> had	0.5 G	~10 ⁻³	~10 ⁻²	0.2	~0.1		≈ 2 EB / det
Total		~3000 G	13 PB	2.3 k	~1955 PB	2.25 M		

Reco and analysis not included (at ALEPH@LEP ~10-20% of the full sim, for storage and computing)

Question 1

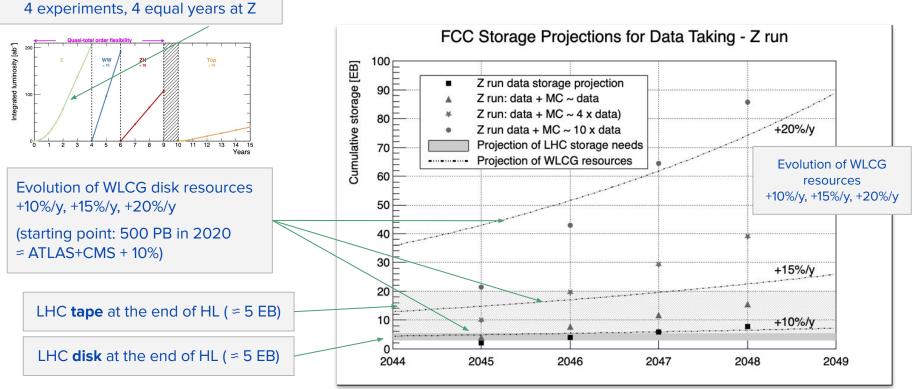
Are adequate computing resources available for the current and next phase (pre-TDR)? Or: how many resources are needed for the FCC pre-TDR (2025-2027) studies?

Question 1: resources for current studies

- The **FSR** has been done with O(**1 PB**) storage, O(**10 kHS06**) computing extracted from CERN non-LHC pool. This can be increased by O(10) in the time scale of pre-TDR
- The Z run requirements are ≈ HL-LHC: full nominal statistics unrealistic. {WW, HZ, ttbar} runs have little demands in term of resources
 - > Heading towards a scenario in which we treat differently the Z run from the rest
- Can we have performance projections at nominal lumi scale w/ limited MC stat? Handles are
 - Software quality and efficiency; biased / filtered samples to reduce variance; new fast techniques (flashsim, ...); interplay parametrized and full simulation; access to more heterogeneous resources (EuroHPC, national resources, ...)
 - Several potential synergies with LHC
- *En passant*, 5-10 PB and 0.1 MHS06 enable a 100xLEP scenario (Z run with 100x LEP nominal luminosity), likely matching the precision of the current tools
 - Full sim storage: ≈500 TB, 600 HS06

EP-SFT

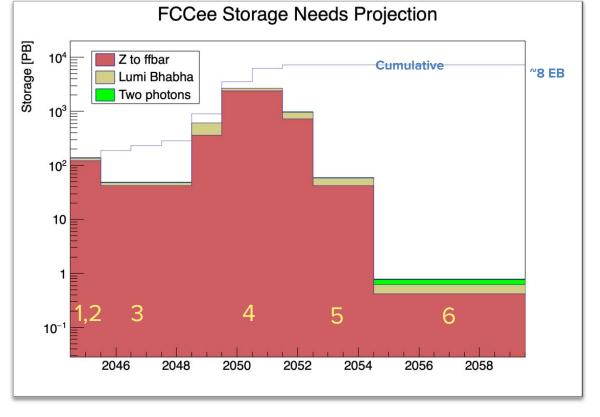
ware Frameworks And Tool


Question 2

How would the FCC-ee run in 2040's look like in terms of computing resources?

Illustrative Storage Projection for Z Run

More realistic Storage Projection for FCC-ee


4 equally demanding experiments

More realistic sequence (15 y operations)

- 1. 1-2 m 0.25 * nom_lumi run at Z
- 2. 1-2 m 0.25 * nom_lumi run at WW
- 3. 3.5 y HZ run
- 4. 4 y Z run (peak and off-peak)
- 5. 2 y WW run
- 6. 5 y ttbar run

1 day Z calibration runs every month during WW, HZ, ttbar runs

Based on <u>P Janot et al</u> (and P Janot private communication)

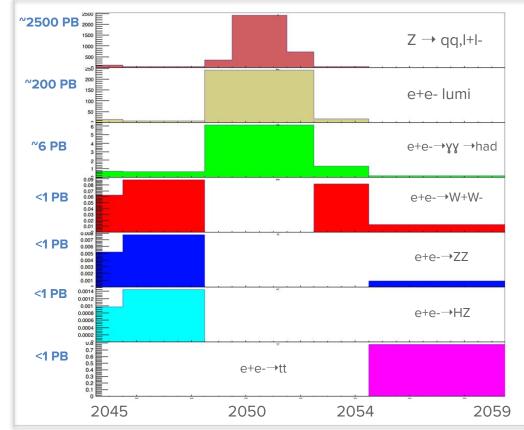
Summary

- Ultimate FCCee computational needs are O(HL-LHC)
 - FCCee operations in 2040s-2050s should not be particularly challenging
- During pre-TDR, evolution of current CERN centric resources should enable minimal investigating scenarios
 - Various fronts are being considered to increase available amount of resources, following the LHC approach (EuroHPC,...)
 - Ongoing efforts both on the software and on the physics interpretation side for optimal use, and to identify possible criticalities
- Exploitation of the several synergies with the LHC activities essential

Thank you!

Backup

More realistic Storage Projection for FCC-ee


4 equally demanding experiments

More realistic sequence (15 y operations)

- 1. 1-2 m 0.25 * nom_lumi run at Z
- 2. 1-2 m 0.25 * nom_lumi run at WW
- 3. 3.5 y HZ run
- 4. 4 y Z run (peak and off-peak)
- 5. 2 y WW run
- 6. 5 y ttbar run

1 day Z calibration runs every month during WW, HZ, ttbar runs

Based on $\underline{P \text{ Janot et al}}$ (and P Janot private communication)

Modeling the resource needs

Table 1: The baseline	FCC-ee op	eration model w	ith four interac	tion point	S,
Working point	Z pole	WW thresh.	ZH	$t\overline{t}$	
\sqrt{s} (GeV)	88, 91, 94	157, 163	240	340-350	365
Lumi/IP $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	140	20	7.5	1.8	1.4
Lumi/year (ab^{-1})	68	9.6	3.6	0.83	0.67
Run time (year)	4	2	3	1	4
Integrated lumi. (ab^{-1})	205	19.2	10.8	0.42	2.70
			$2.2 imes 10^6 \mathrm{ZH}$	2×10	6 t \overline{t}
Number of events	$6 imes 10^{12} \ { m Z}$	$2.4 imes 10^8 \; \mathrm{WW}$	+	+370k	\mathbf{ZH}
			$65k \mathrm{WW} \rightarrow \mathrm{H}$	+92kWV	$V \rightarrow H$

For given **target nominal luminosity**, estimating resources requires assumptions about type of detector concepts, data formats, algorithms, ... i.e. moving targets and unstructured activities

And the **MC statistics required** to achieve the goals of the studies

To get an idea, use CLD (FCC version	Table 21: Baseline even	ne event sizes and processing times.					
of the CLIC detector) as a reference detector , the full chain being available	$\begin{array}{c} \text{Process} \\ \text{e}^+\text{e}^- \rightarrow \end{array}$	\sqrt{s} (GeV)	Size / e DELPHES (kB)	vent FULL (MB)	Processing tim DELPHES (ms)	e / event FULL (s)	
	$Z ightarrow q\overline{q}, \ell^+\ell^-$	91.18	8.3, 1.2	1.1, 0.16	14, 0.5	11, 1.6	
FULL = Measured for Z-> had, extrapolated for others	${ m W^+W^-} ightarrow$ all, $ u \overline{ u} \ell^+ \ell^-$	157–163	9.5, 1.2	1.3, 0.16	16, 0.5	13, 1.6	
CERN OpenStack node used for tests: 16 cores, 32 GB RAM	$HZ \rightarrow v \overline{v} b \overline{b}, b \overline{b} b \overline{b}$	240	8.9, 13	1.2, 1.8	15, 23	12, 18	
CERN Openstack hode used for tests. 10 cores, 52 GB KAM CERN Openstack Core = 10-15 HEPSpec06 (HS06 ≈ HS23)	$\mathrm{ZZ} ightarrow \mathrm{all}$	240	10	1.4	17	13	
	$t\overline{t} \rightarrow all$	365	18	2.3	30	23	

Large enough example: Z, lumi, yy: LEPx100 {WW,HZ,Top} still nominal stat

Run	Process	N evts	D	elphes	Full	Simulation	Comments
			Storage (TB)	Computing (HS06/3y)	Storage (TB)	Computing (HS06/3y)	
Z	qqbar	400 M	3.3	~1	440	500	100x LEP
	⁺ ⁻	60 M	0.07		10	10	
	e+e- lumi	320 M	0.5	~10 ⁻²	66	50	
	γγ →had	5 M	~10 ⁻²		2	1	
W	WW	60 M	~1		75	72	Nominal stat
	e+e- lumi	320 M	0.5	~1	66	50	100x LEP
	γγ →had	5 M	~10 ⁻²	~0.1	2	1	
HZ	HZ	500 k	~10 ⁻²		~10 ⁻³	0.95	Nominal stat
	e+e- lumi	320 M	0.5	~0.5	66	50	100x LEP
	γγ →had	5 M	~10 ⁻²	~0.1	2	1	
Тор	ttbar	500 k	~10 ⁻²		~10 ⁻²	1.25	Nominal stat
	e+e- lumi	320 M	0.5	~10 ⁻²	66	50	100x LEP
	γγ →had	5 M	~10 ⁻²	~10 ⁻²	2	1	
Total 1 exp		~1800 M	~6 TB	~3	~0.8 PB	~800	
4 exp		~ 7 G	~24 TB	~12	~3.2 PB	~3200	

FCC-ee assumptions and baseline needs

- Integrated luminosities
 - Nominal: {205, 19.2, 10.8, 0.41, 2.65} ab^{-1} at $\sqrt{s} = \{88-94, 157-163, 240, 340-350, 365\}$ GeV
 - # of evts: $6x10^{12}$ visible Z decays, 2.4x10⁸ WW events, 2.1x10⁶ ZH events, 2x10⁶ tt events
- Baseline event sizes / processing time for hadronic evts at Z

Table 21: Baseline event sizes and processing times. Parametrised simulation and full simulation with GEANT4 are denoted DELPHES and FULL, respectively. For FULL, the values are extrapolated from measurements performed with $Z \rightarrow q\overline{q}$ events, under the assumptions described in the text.

	Process	\sqrt{s}	Size / e	vent	Processing tim	e / event	
	$e^+e^- \rightarrow$	(GeV)	DELPHES (kB)	FULL (MB)	DELPHES (ms)	FULL (s)	-
	$\mathrm{Z} ightarrow \mathrm{q} \overline{\mathrm{q}}, \ell^+ \ell^-$	91.18	8.3, 1.2	1.1, 0.16	14, 0.5	11, 1.6	
	${ m W^+W^-} ightarrow$ all, $\nu \overline{ u} \ell^+ \ell^-$	157–163	9.5, 1.2	1.3, 0.16	16, 0.5	13, 1.6	
	$\mathrm{HZ} ightarrow \nu \overline{\nu} \mathrm{b} \overline{\mathrm{b}}, \mathrm{b} \overline{\mathrm{b}} \mathrm{b} \overline{\mathrm{b}}$	240	8.9, 13	1.2, 1.8	15, 23	12, 18	
	$\mathrm{ZZ} ightarrow \mathrm{all}$	240	10	1.4	17	13	
	$\mathrm{t}\overline{\mathrm{t}} ightarrow \mathrm{all}$	365	18	2.3	30	23	
FULL = Me	easured for Z-> had, extra	polated for		CERN OpenStack n	ode used for t	xtrapolated for others ests: 16 cores, 32 GB RAM. EPSpec06 (HS06 ≈ HS23)	

Projections/detector - Z,WW,HZ,Top full nom stat

Table 22: Projected needs for the nominal integrated luminosity, for one experiment. The amount of HS06 is shown for a reference period of three years, i.e., roughly the duration of the next phase of the study.

			Deli	PHES	Fu	LL	
Run	Process	Number of events	Storage (PB)	CPU (HS06)	Storage (PB)	CPU (HS06)	
Z	$\overset{\mathrm{q}\overline{\mathrm{q}}}{\ell^{+}\ell^{-}}$	1500 G 225 G	12.5 0.275	2.2 k 12	1650 40	2 M 40 k	
W	W^+W^-	60 M	$\sim 10^{-3}$		0.075	72	
ΗZ	HZ VBFH	500 k 16 k	$\begin{array}{c} \sim 10^{-5} \\ \sim 10^{-6} \end{array}$		$ \sim 10^{-3} \\ $	~ 1	
top	${f t} {f ar t} {f HZ}$	500 k 90 k	$\sim 10^{-5} \ \sim 10^{-6}$		$\sim 10^{-2}$ $\lesssim 10^{-3}$	~ 1	
	VBF H	23 k	$\sim 10^{-6}$		$\lesssim 10^{-3}$		
,	Total	1725 G	13	2.2	1690	2 M 🔸	

Example: Z LEPx100, {WW,HZ,Top} full nominal stat

Table 23: Projected needs for one experiment, for the scenario with nominal integrated luminosity samples for the W, HZ and $t\bar{t}$ runs, and event samples 100 times larger than the LEP samples for the Z run. The total corresponds to four experiments requiring the same resources. The amount of HS06 is shown for a reference period of three years, i.e., roughly the duration of the next phase of the study. The totals in bold are beyond today's availability.

			Deli	PHES	Fu	LL	
Run	Process	Number of events	Storage (TB)	CPU (HS06)	Storage (TB)	CPU (HS06)	
Z (100×LEP)	$\overset{\mathbf{q}\overline{\mathbf{q}}}{\ell^{+}\ell^{-}}$	400 M 42.5 M	3.25 0.05	~ 1	440 6.5	475 7	
W	W^+W^-	60 M	0.6		75	72	
HZ	HZ VBFH	500 k 16 k	$\begin{array}{c} 0.0065\\ \sim 0.001 \end{array}$		1 0.25	~ 1	
top	${f t} {f ar t} {f HZ}$	500 k 90 k	$\begin{array}{c} 0.009 \\ \sim 0.001 \end{array}$		9 0.2	~ 1	
	VBFH	23 k	~ 0.001		0.25		Ov
Tota 4 experii		500 M 2000 M	4 16	~ 1 ~ 4	530 2100	550 2200	pre

