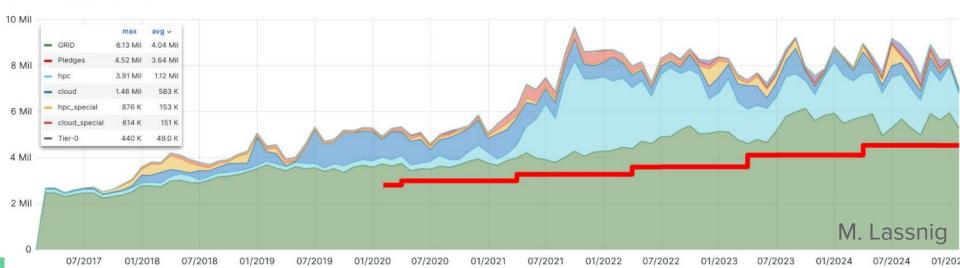
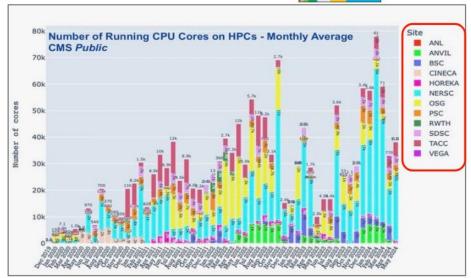
HPC Integration in HEP


Andrej Filipcic

ATLAS resource usage :: Last 8 years

- HPCs give us access to large-scale compute resources beyond WLCG commitments
 - The WLCG is already providing these resources significantly above the pledge
 - On top of that, HPCs allow us to increase compute capacity even more by 30-40%
 - O Looking at the last 90 days, we were running ATLAS jobs on 15+ HPC sites with various levels of integration
- HPCs play a key role in ATLAS Computing but come with significant challenges
 - O They operate outside our standard WLCG policies, especially related to resource planning
 - Lack straightforward WLCG interconnectivity, especially related to grid storage and CVMFS
 - Enforce strict security and access policies with custom onboarding

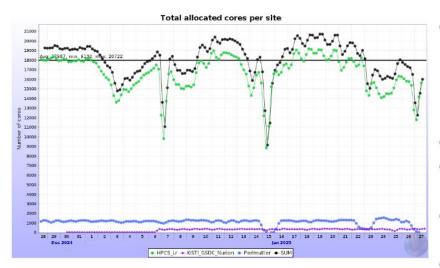
Job HS23 by Resource



HPC @ CMS

APC integration one of the key assets of the CMS Computing: a number of HPC machines has been integrated and continuously been used in production mode throughout the year 2020.

	11		1	1	T		1
Category	Explanation	CMS standard solution	CMS preferred solution for HPC	CMS fallback workable solution (full utilizability)	CMS fallback solution (for a fraction of workflows)	CMS no-go scenario	Possible CMS devels to solve the no-go
Architecture	3ase system urchitecture	x86_64	x86_64	x86_64 + accelerators (with partial utilization)		Currently, OpenPower, ARM, they could be used but at the price of physics validation	QEMU? Recompiling + physics validation?
Memory per Thread/core	Memory rvailable to each hread / process	2 GB/Thread	2 GB/Thread	Down to 0.5 GB/thread needs heavy multithreading, at	GEN and SIM workflows need less than 2 GB/Thread	Less than 0.5 GB/thread	



Parts of the pledges are contributed by fully transparently integrated HPCs - i.e. CSCS

CMS internal technical document (2019), which identifies minimal set of requirements on HPC based resources in order to run CMS workflows

Current utilization of HPCs in ALICE

 5% in average, 10% max contribution to total CPU allocation for ALICE

- 3 HPC successfully integrated through JAliEn in the ALICE Grid, following the principles from the previous slide
 - Lawrencium and Perlmutter at LBNL
 - Nurion at KISTI
- Co-located at a T2 and T1
- Profiting from direct connection with the local storage elements
- Able to run all types of ALICE workflow reconstruction, simulation, analysis
- All deployed as 'whole node' the payload management and resources allocation entirely managed by ALICE
 - Allows to respect and adjust to specific resources limits, for example network throughput

S. Piano

LHCb

- HPCs are heterogeneous: no generic and unique solution
- Significant development needed with respect to the standard, gridlike solution
- Sites currently used: CSCS (CH),
 MareNostrum (BSC, ES), Kabre (CR)
- Allocations at SantosDumont (Petropolis, BR), Marconi100 (CINECA, IT), NERSC & OSC (US) in the past

JENA WG, HEP-HPC strategy meetings

Edge nodes and AAI

Topics:

- Edge nodes as means to join WLCG (DMS, WMS)
 - · How to deploy them?
- · Interoperable AAI can come from free

Networking

Topics:

- WAN networking not a technical problem, only political
- If an open networking is not possible, intermediate solutions: VPNs, proxies, opening specific subnets, ...
- Keep an eye on <u>EuroHyperCon</u>

Storage handling

Topics:

- Integrate existing HPC datamovers with FTS
- Edge services to expose POSIX as Rucio-Dirac managed ares

Type of workflows

Topics:

- (some) HPCs nervous about supporting random code from 1000s random collaborators; much happier with "production only" WFs
- Difficult to allocate CPU only jobs; but HPCs "currently tolerant" on how well GPUs are used

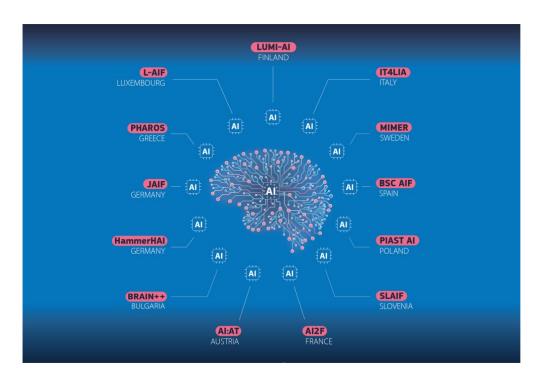
Software

Topics:


- Most of the centers are experimenting CVMFS (due to other sciences "pushing")
- No preferred high-level framework; they consider SYCL/Alpaka/Kokkos/OneAPI as "application problems"

Current status

- All LHC experiments are using HPCs (others too, eg Belle 2, DUNE)
 - Large contribution of cycles to production (ATLAS, CMS) mostly from EU and US
 - Some analysis, especially AI on GPUs
- No coherent approach to access, scheduling, data handling yet
 - But infrastructure requirements are clear
- Some HPCs provide pledges
 - These support WLCG services (squids, cvmfs, transfers)
- New architectures are difficult to use
 - Mixture of CPU, GPU, GPU, Neuromorphic, experimental processors (eg RISC-V)
 - But HPC design is becoming closer to Cloud (Al user pressure)
- HPC Investments are increasing in EU public sector


EuroHPCs

- 3 large machines, +2 coming 2025/26
- LUMI, MN5, Vega, Karolina, Leonardo used by HEP regularly, more in the future (JUPITER, Alice Recoque)
- WLCG EuroHPC, no official approach/strategy yet
- Future opportunities:
 - Centres of Excellence Call HEP presence in official SW development
 - EuroHPC Federation Platform (EFP) similar to WLCG/EGI
 - Hyperconnectivity

EuroHPC AI Factories - Rapid changes in EC strategy

- >2B€ investment in Al-optimised HPCs and support (HE projects)
 - 20B€ planned for 4-5 Giga Al Factories (industry involvement)
- Approaches:
 - Extend existing HPCs to Al
 - Build new Al-dedicated HPCs
 - Build dual HPCs (AI + non-AI)
- Pros (for HEP):
 - Al requires WLCG-like openness, intensive data store and WAN transfers
 - Cloud technologies (eg K8s) are being introduced
- Cons:
 - Limited CPU resources
 - Many new GPUs are becoming Al exclusive (emulated FP64 if...)
 - Shift from science to industry users

Conclusions

- HPC are used in HEP since 15 years, they significantly contribute in the last 5 years to production (and analysis)
- Technology is evolving rapidly, especially in the last couple of years due to Al boost. Vendors will follow industry demand fast (eg remove single/double precisions, inference only GPUs).
- New HPCs are increasingly more difficult to use by HEP, conventional CPUs are a smaller part of investment and resources
- If HEP wants to stay in (Euro)HPC, some strategic decisions should be made:
 - Software re-engineering for rapid technology evolution
 - Stakeholder position in EuroHPC to influence the investments
 - Participate in European Commision IT Strategy on compute, storage, open-data infrastructure...
 - Education and Training