

Al for fast inference in real-time systems: status and future perspectives 2026 Update: European Strategy for Particle Physics

Jun 23–27 2025, Venice Lido

EnHzürich

Thea Klæboe Årrestad (ETH Zürich)

Time to process

This readout technology doesn't (yet) exist!

Ultimate precision at future colliders could be bottlenecked by our data acquisition systems

Example vertex detector inner layer from before (#241 FCC-ee):

Current technology 3.2 - 6.4 Gbit/s

32 bits pixel data in inner layer @ 200 MHz/cm²

24.4 Gbit/s

We have two options:

\rightarrow ML on ASIC/FPGA

<u>#67 #124</u> ML inference at low latency **HEP Tools and Communities**

HEP quantization libraries:

(Collaboration with AMD: Brevitas for PyTorch)

Co-processing kernel (Xilinx accelerators/SoCs)

HEP hardware ML libraries:

\Conifer

ASICs

Frontend (QAT)

Q K Keras

PYTÖRCH Brevitas

HQG

Intelligent frontends **Reduce on-detector**

- Subtle data patterns within single (pixel) layer! ML on ASIC on-detector
 - filtering, and/or
 - featurizing

Challenges

Metric	Simulation	Target
Power	48 mW	<100 mW
Energy / inference	1.2 nJ	N/A
Area	2.88 mm ²	<4 mm²
Gates	780k	N/A
Latency	50 ns	<100 ns

Radiation hardness

Signal

Background

#<u>11</u> #<u>95</u> #<u>247</u> #<u>233</u> #<u>93</u> #<u>211</u> #<u>272</u> **Smart Pixels** Pixel readout ASIC with ML

- <u>frontend filtering</u>: discard low-p_T tracks
- <u>feature extraction</u>: particle position+angle Mixture Density Model

#<u>11</u> #<u>95</u> #<u>247</u> #<u>233</u> #<u>93</u> #<u>211</u> #<u>272</u> **Smart Pixels** Pixel readout ASIC with ML

- frontend filtering: discard low-p_T tracks
- <u>feature extraction</u>: particle position+angle Mixture Density Model

eFPGAs Fully **reconfigurable logic** in ASIC design

• The pathway to put ML on-detector!

BDT classifier in 28nm CMOS ASIC

#<u>11 #95 #247 #233 #93 #211 #272</u> **Smart Pixels Pixel readout ASIC with ML**

- frontend filtering: discard low-p_T tracks
- feature extraction: particle position+angle Mixture Density Model

Calorimeter data concentrator

On FPGA

Transmit encoded data!

Intelligent back-ends

Intelligent backends

- Trigger-less for future e⁺e⁻ not guaranteed
- FPGA-based inference for improved triggering
 - in L1 trigger
 - as accelerators in HLT
- Possible through HEP experiment-agnostic tools!

2024: Neural hardware triggers making decisions in LHC experiments!

CMS:

ML inference on **FPGA**

Lower-level information like tracks and particles in hardware triggers has lead to increased usage of set-based and graph-based architectures, like 250 ns DeepSet flavour tagging!

<u>Object tagging for Phase-2 CMS</u>

Real-time tracking BELLE-II

- polar angles of single particle track

arxiv:411.13596

•Already use neural track hardware trigger for vertex-reconstruction, and azimuthal and

Well-established: MLPs, <u>CNNs</u>, <u>DeepSets</u>, GNNS, RNNS, SYNDOLICAL regression, (variational) autoencoders, BDTs, IsolationTrees

Everything here Everything here Experimental: is abnormal Transformers, large **Reconstruction error** distributed CNNs (ResNet, VGG)

Aultilayer Perceptron MLP ep Sets DS nteraction Network IN

NP?

Quantised Interaction Networks and Deep Sets in <160 ns

P. Odagiu et al. 2024

ESPP proposal: AI R&D collaborations **EuCAIF** proposal for scalable, robust AI through cross-domain collaboration

- Al for Detector and Accelerator Control: Accelerator performance, calibration, system monitoring.
- Al for Detector Optimization: Differentiable programming, reinforcement learning to maximize detector performance
- Al for Event Reconstruction: Tracking, calorimetry, end-to-end foundation models.
- Al for Data Processing: Front-end electronics, trigger

DRD-7 and EuCAIF AI-RDs

in close collaboration with the Fast Machine Learning Lab, CERN NGT,

Conclusion

- ML is essential to address unique data and processing challenges in HEP
 - Custom workflows and tools developed for extreme constraints
- AI/ML is ubiquitous in upcoming and future high-luminosity experiments
 - Intelligent processing near sensors needed to manage data from granular detectors
- Cross-experiment collaboration (e.g. DRDs, AI-RDs) is key to future success!