PARALLEL 4 / STRONG INTERACTIONS

Partonic dynamics in protons and nuclei: prospects with future measurements at HL-LHC and electron-hadron colliders

<u>Néstor Armesto</u> (IGFAE, USC) and Andy Buckley (Glasgow)

23-27 JUNE 2025 Lido di Venezia

Introduction. 1.

2. State-of-the-art and future physics goals:

- Collinear proton PDFs.
- Collinear nuclear PDFs.
- 3D structure: TMDs and GPDs.
- Small-x physics.
- Lattice QCD. ullet

3. Future facilities: kinematics and benchmark measurements.

- Collinear proton PDFs.
- Collinear nuclear PDFs.
- 3D structure: TMDs and GPDs.
- Small-x physics.
- 4. Conclusions.

Contents

Talks by T. Cridge/C. Gwenlan/M.Ubiali, H. Paukkunen and V. Bertone at https://indico.cern.ch/event/1527574/#day-2025-05-28.

Note: no spin included; only protons and nuclei.

Inner structure of protons and nuclei

Inputs received

ld 👻	Title (link to file)	т Туре ऱ	Origin 👻
68	Input from the ALICE Collaboration	A: Exp Collaboration	LHC ALICE
170	Highlights of the HL-LHC physics projections by ATLAS and CMS	A: Exp Collaboration	LHC ATLAS+CMS
23	Prospects and Opportunities with an upgraded FASER Neutrino Detector during the HL-LHC era: Input to the EPPSU	A: Exp Collaboration	LHC FASER
19	The Forward Physics Facility at the Large Hadron Collider	A: Exp Collaboration	LHC FPF
82	Heavy ion physics with LHCb Upgrade II	A: Exp Collaboration	LHC LHCb
213	LHCspin: a Polarized Gas Target for LHC	A: Exp Collaboration	LHC LHCb
235	Summary Report of the Physics Beyond Colliders Study at CERN	A: Exp Collaboration	SPS, PBC
114	Synergies between a U.Sbased Electron-Ion Collider and European Research in Particle Physics	B: Future Colliders	eh: EIC USA
214	The Large Hadron electron Collider (LHeC) as a bridge project for CERN	B: Future Colliders	eh: LHeC
209	FCC: QCD physics	B: Future Colliders	FCC
227	Prospects for physics at FCC-hh	B: Future Colliders	FCC
241	The FCC integrated programme: a physics manifesto	B: Future Colliders	FCC
247	FCC Integrated Programme Stage 2: The FCC-hh	B: Future Colliders	FCC

ld 👳	Title (link to file)	т Туре 👳	Origin –
69	Future Opportunities with Lepton-Hadron Collisions	C: Community (specific)	DIS community
224	Community Support for Physics with high-luminosity proton-nucleus collisions at the LHC	C: Community (specific)	HI at HL-LHC
2	Light Ion Collisions at the LHC	C: Community (specific)	HI Light ions LHC
29	Strategy for the Future of Lattice QCD	C: Community (specific)	Lattice QCD
103	Nuclear Physics and the European Particle Physics Strategy Update 2026	C: Community (specific)	NuPECC
174	Phase-One LHeC	D: Theory / Specific	Personal inputs on LHeC combined with HL-LHC
5	Prospective report of the French QCD community to the ESPPU 2025 with respect to the program of the LHC Run 5 and beyond and future colliders at CERN	E: National (specific)	France QCD

20 contributions plus input from MuCol, contacts with the global (n)PDF and TMD groups, GPD community, and lattice groups.

Proton collinear PDFs: state-of-the-art

- Methodology: complex error analysis (CT, MSHT, NNPDF; HERAPDF, ABMP).
- Theory: approximate N3LO QCD PDFs + QED (MSHT, NNPDF); MHOUs.
- Challenges:
 - Data: tension between datasets, need of information about systematics.
 - Parametrisation/methodology biases & uncertainty estimation: closure tests.
 - How the PDF sets absorb experimental and theoretical inconsistencies.
 - and combined.

• Data: 0(5000) data points, complementarity between HERA, fixed target and LHC.

• MHOs: nuisance parameters or inclusion of even higher orders: aN3LO QCD+QED, 2 sets available

 Combination (PDF4LHC21)

Nuclear collinear PDFs: state-of-the-art

- Methodology: complex error analysis (nCTEQ, EPPS, nNNPDF, TUJU, KSASG). • Theory: NLO/NNLO.
- Challenges:

 - Parametrisation biases & uncertainty estimation.
 - Sizeable differences up to a factor 2 between sets, within uncertainties.

• Data: O(2000) data points, complementarity between fixed-target eA & pA, and LHC.

 \circ Data: Incompatibilities in some data (D's in pPb@LHC) and problems to use others (J/ ψ in UPCs).

Collinear PDFs: precision physics

- PDFs essential for precision physics studies:
 - Dominant uncertainty of many SM parameters: ATLAS α_s (0.0005/0.0009), and CMS M_W (4.4/9.9 MeV) and $\sin^2\theta_W$ (0.0027/0.0031).
 - Differences between PDF sets, profiling delicate, simultaneous PDF+SM parameter fits.

Consistent with (NNLO) World $\alpha_{S,aN3LO}(M_Z^2) = 0.1170 \pm 0.0016$ 2404.02964 Average of 0.1180 ± 0.0009 .

- High mass (large x): sizable uncertainties, BSM can be hidden in PDF uncertainties.
- nPDFs may mask QGP-like effects in small systems, e.g., pPb or pp.
- nPDFs provide sizable uncertainties for QGP characterisation in PbPb.

Collinear PDFs: goals and challenges

- proposed experiments \Rightarrow need of controlled systematics and correlations, inconsistencies?
- need of control precisions, tolerance?
- possibility of higher order calculations.
- **small system problem)**: driven by PDF precision/accuracy improvements \Rightarrow

• Data: substantial progress expected from the complementarity of upcoming and

• Methodology: numerous developments, parametrisation \Rightarrow increasing complexity,

• **Theory**: N3LO PDFs coming, and inclusion of theoretical uncertainties, crucial to achieve the required precision \Rightarrow understanding of theoretical uncertainties and

 Standard Model/BSM Parameters (including QGP characterisation and the understanding the assumptions underlying profiling and their impact, separating out 'new' effects from PDFs, complementary data from multiple colliders required.

- TMD factorisation appears in **two-scale problems**, e.g., Q and q_T in DY.

- Also extracted from lattice and related with small-x physics (CGC).
- Nuclear effects in TMD analyses through nPDFs.

• TMDs contain perturbative & non-perturbative pieces; linked to collinear PDFs/FFs. • Numerous sets/approaches, large perturbative accuracy (N4LL, required by data).

• Different non-perturbative modelling and collinear PDFs \Rightarrow sets difficult to compare.

 Measured in exclusive processes: DVCS, TCS (NNLO), exclusive VM production (NLO?), DDVCS, 2 to 3 processes like $\gamma\gamma$ or γ -meson, transition GPDs/DAs,... • Relation with the QCD energy-momentum tensor. • The partonic profile of hadrons can be extracted dependent on x.

GPDs: state-of-the-art

B. Pasquini @DIS2025

quark polarizatio						
ation	GPD	U	L	7		
olariz	U	H		\mathcal{E}_{2}		
on po	L		\tilde{H}	$ ilde{E}$		
nucle	T	E	$ ilde{E}$	H_T ,		

TMDs and GPDs: goals and challenges

- and GPDs, e.g., gluon, flavour dependence.
- Methodology: many developments, several parameterisations, full method of to be included), interplay with collinear PDFs and FFs, extension to nuclei.
- **Theory**: for TMDs large perturbative accuracy available, crucial to achieve the completion of the missing pieces.
- **Precision**: α_s from low transverse momentum DY, M_W in hadronic colliders,...

• **Data**: substantial progress expected from upcoming experiments (EIC) \Rightarrow need of large amounts from different observables in order to constrain the numerous TMDs

extraction still lacking for GPDs \Rightarrow increasing complexity (TMD PDFs and FFs have

required precision; for GPDs NNLO DVCS available but not yet full NLO evolution \Rightarrow understanding of theoretical uncertainties, extension to small x and relation with other formalisms, possibility of using non-perturbative information from lattice;

Small x : state-of-the-art and challenges

• Challenges:

- Experimental data inconclusive: lever arm in Q² at small x, proton and nuclei.
- Complete NLO calculations: stability?; target modelling.
- Relation with TMD factorisation, and search of unified evolution.

- In QCD at high energies, fixed-order perturbation theory (linear, DGLAP) eventually fails \Rightarrow resummation, non-linear effects (saturation, driven by density).
- NLO calculations available in both regimes dilute (BFKL+coll. res., DIS and $\gamma\gamma$ cross sections, jet-gap-jet observables, H, heavy quarks) and dense (CGC: JIMWLK/BK+ coll. res., DIS cross sections including HQs, single particle/jet and DY+jet in pA, single hadron, dihadron and dijet in DIS, non-eikonal corrections).

Lattice: state-of-the-art and challenges • Since 2013, lattice QCD has provided 1st-principles PDFs, TMDs and GPDs.

- 2+1(+1) flavors (physical m_{π} for some quantities) achieved.

• Challenges: signal-to-noise ratios, extrapolation to physical m_{π} , uncertainties for large and small x; lattice results into global fits (already done for COMPASS transversity TMD).

NNPDF4.0: arXiv: 2109.02653

15

1504.04855, strangeness through charm tagging at SHiP

Sizeable but modest impact from EIC, SHiP provides strangeness.

NNPDF3.0 NNLO

NNPDF3.0 NNLO + SHiP charr

- Large impact from HL-LHC, but a large fraction of it already done (update needed).
- Note: timelines may be different.

- from
- 4LHC2 PDF (68% C.L.) LHeC projection 50 fb⁻¹ C LHeC projection 1 ab⁻¹ PDF4LHC21 NNPDF4.0 CT18 5 MSHT20 ABMP10 Ratio 0.2 0.3 0.4 0.5 0.6 s+s distribution at Q² = 1.9 GeV² 4LHC21 1.8 \overline{S} +s1.6 PO 1.4 5 Ratio 0.8 0.6 LHeC projection 1 ab⁻¹ + HQ 0.2 10⁻² 10⁻¹

down valence distribution at Q² = 1.9 GeV²

2503.17727, LHeC

2309.09581, FPF, PDF4LHC21

10³

M_x (GeV)

10²

Sizeable impact from FPF@FCC (valence), close to FPF@HL-LHC. Large impact from MuCol (statistics only).

Review: arXiv: 2311.00450

Kinematic planes for nuclei

and muons

Large impact from EIC. Sizable impact from LHCb SMOG2 and ALICE FoCal $(\gamma' s \sim D' s).$

2503.21531, LHCb SMOG2

2309.09581, FPF, EPPS21

- Large impact from LHeC.
- Sizable impact from FPF.

2007.14491, LHeC

1501.05879, FCC, top

Large impact from ulletFPF@FCC, particularly at small x, and FCC.

TMDs: experimental prospects

1601.01813

	DIS & DY	SIDIS	$pA \rightarrow hX$	$pA \rightarrow \gamma \operatorname{jet} X$	Dijet in DIS	Dij
$g^{[+,+]}(WW)$	×	×	×	×	\checkmark	
g[+,-] (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	
aluon Inpol. Ind Iin. Iol. MDs	LHC, FCC-hh, EIC, LHeC	EIC, LHeC	LHC FCC	C, C-hh	EIC, LHeC	LH FC
	DIS & DY	SIDIS	$pA \rightarrow hX$	$pA \rightarrow \gamma \operatorname{jet} X$	Dijet in DIS	Dij
g[+,+] (WW)	×	×	×	×	\checkmark	
g[+,-] (DP)	×	×	×	×	×	
	•	•				

Experiment red = ESPP submissions	Observable	Access to
HL-LHC in collider and fixed-target mode	Exclusive quarkonium production and TCS in UPCs	Quark and gluon GPDs
LHCspin	TSSA in UPCs	
EIC	DVCS, exclusive VM production	Quark and gluon GPDs
LHeC	DVCS, exclusive VM production	Quark and gluon GPDs
FAIR	$N+N \longrightarrow N+\pi(90^{\circ})+B$	Transition GPDs
Electron-Ion Collider in China	DVCS, DVMP	Quark and gluon GPDs
CLAS12 luminosity upgrade	Proton, neutron and nuclear DVCS, TCS, DVMP	Quark and gluon GPDs
SoLID	DVCS, TCS, DDVCS, exclusive meson production on polarised proton and nuclear targets	Quark and gluon GPDs
JLab22	DVCS,	Quark and gluon GPDs

'(x,x,1,Q²) 2 88 H x 0.5 0.0^E 0.2

[*m*]

2

N. Armesto, June 23rd 2025

Small x: experimental prospects

photon-photon at LEP3/FCC-ee/CEPC/LC,...

Plus: <u>PPS2</u> at CMS in the HL-LHC, diffractive observables at the EIC and LHeC,

Examples of effect on observables: Higgs

2309.11269, 2411.05373 MSHT20+EIC total/PDF Higgs in Gluon Fusion (PDF + MHOUs) $\sqrt{s} = 13.6 \text{ TeV}, \text{ N}^3 \text{LO ME}$ – 1.04to PDF4LHC21 .02.00).98).960.94Ratio 0.920.90MSHT20xNNPDF40 aN3LO PDF4LHC21 NNLO MSHT20 aN3LO NNPDF4.0 aN3LO NNPDF40 Update aN3LO MSHT20 Update aN3LO 2503.17727, LHeC total/PDF+ α_s ggH production cross section --- effect of small-x resummation m_H = 125 GeV N₃LO, f.o. PDFs N³LO, res PDFs 1.1 $\mu_{\rm F} = \mu_{\rm R} = m_{\rm H}/2$ N³LO+LLx, res PDFs 1.08 f.o. PDFs: NNPDF31sx_nnlo_as_0118 res PDFs: NNPDF31sx_nnlonlix_as_0118 1.06 ratio to N³LO 1802.07758, effect of band: PDF uncertainty 1.04 small-x resummation on 1.02 $gg \rightarrow H$ 0.98 ∯‡ ∾ ~ 9 5 8 √s [TeV]

- Higgs cross section at LHC: $gg \rightarrow H \text{ and } HW^+$
- (VBF).

Comparing different projects

Quantity or question/ experiment	LHC in fixed fixed target mode D, B, quarkonium, light hadrons	(HL-)LHC in collider mode D, B, quarkonium, light hadrons, UPCs, DY	ALICE FoCal Photons, quarkonia and jets	SHiP ν flux from charm, NC and CC DIS	EIC NC, CC and jets in DIS, light and heavy flavour ID, exclusive diffraction	FPF ν flux from charm, NC and CC DIS	LHeC NC, CC and jets in DIS, heavy flavour ID, exclusive diffraction	FCC-ee/ LEP3/ CEPC/LC FFs of light and heavy quarks, jets, yy	MuCol v flux from muons	FC quarko hadror
PDFs		Most information available	Simultaneous fits of proton and nuclei	Simultaneous fits of proton and nuclei; F ₄ , F ₅	Covered by HERA	Simultaneous fits of proton and nuclei; F ₄ , F ₅			Simultaneous fits of proton and nuclei	Kinem
nPDFs		Most information available	Region overlapping with current pPb							Kinem
TMDs		DY, jets	Little PID				Little PID in current project	FFs needed for PDFs, and TMD in jets		D
GPDs		Currently UPCs								Currei
Small- <i>x</i> dynamics	Large x needed for small x			Large x needed for small x	Kinematic reach	Kinermatic reach		γγ	Large x needed for small x	

Comparing different projects

Dark green: Highest precision/breadth; Light green: strong/focussed contributions; White: no contribution.

Many thanks to the WG members, and to Constantia Alexandrou, Valerio Bertone, Tom Cridge, Abraham Gallas, Maria Vittoria Garzelli, Claire Gwenlan, Francesco Hautmann, Charlotte van Hulse, Florian Jonas, Marco Van Leeuwen, Heikki Mäntysaari, Saverio Mariani, Pavel Nadolsky, Hannu Paukkunen, Peter Petreczky, Juan Rojo, Paweł Sznajder, Robert Thorne, Maria Ubiali, María Vieites,..., for information and comments.

Thank you very much for your attention!!!

Backup

Proton collinear PDFs: state-of-the-art

- Methodology: complex error analysis (CT, MSHT, NNPDF; HERAPDF, ABMP).
- Theory: approximate N3LO QCD PDFs + QED (MSHT, NNPDF); theoretical uncertainties from missing higher orders (MHOUs).
- Data O(5000) data points, complementarity:
 - HERA valence quarks, some sea, low x gluon.
 - Fixed target (and others) flavour decomposition.
 - LHC sea quarks, flavour decomposition, medium-large x gluon.

2109.02653_{GeV} ū at 100 GeV 1.15 1.15 NNPDF4.0 (NNLO) (68 c.l.+1σ) NNPDF4.0 (NNLO) (68 c.l.+1σ) () 1.10 1.05 1.00 CT18 (NNLO) (68% c.l.) CT18 (NNLO) (68% c.l.) (OTNN) 1.05 MSHT20 (NNLO) (68% c.l.) MSHT20 (NNLO) (68% c.l.) o. L 1.00 NNPI 요 0.95 을 0.95 Ratio 0.90 Ratio 0.90 0.85 0.85 10-2 10-3 10^{-4} 10-2 10^{-4} 10^{-3} 10^{-1} 10-1 10⁰ х х d at 100 GeV d at 100 GeV 1.15 1.15 NNPDF4.0 (NNLO) (68 c.l.+1σ) NNPDF4.0 (NNLO) (68 c.l.+1σ) CT18 (NNLO) (68% c.l.) CT18 (NNLO) (68% c.l.) () 1.10 NN 1.05 () 1.10 1.05 MSHT20 (NNLO) (68% c.l.) MSHT20 (NNLO) (68% c.l.) 0 4 1.00 JOINN 1.00 <u>ද</u> 0.95 은 0.95 Ratio 0.90 Ratio 0.90 0.85 0.85 10-2 10⁻³ 10^{-3} 10-2 10-4 10-1 10^{-4} 10^{-1} 10⁰ х х

PDF4LHC21 available.

Proton collinear PDFs: state-of-the-art

Huge efforts to understand the differences between different sets, combination

Proton collinear PDFs: state-of-the-art

- Challenges:
 - Data: tension between datasets, need of information about systematics.
 - tests.
 - How the PDF sets absorb experimental and theoretical inconsistencies.
 - QCD + QED, two sets available and combined.

Parametrisation biases/different methodology & uncertainty estimation: closure

• Missing higher orders: nuisance parameters, or inclusion of higher orders: aN3LO g at 100 GeV

Proton collinear PDFs: precision physics

- PDFs essential for precision physics studies:
 - Dominant uncertainty of many SM parameters: ATLAS α_s (0.0005/0.0009), CMS M_W (4.4/9.9 MeV) and $sin^2\theta_W$ (0.0027/0.0031).
 - Differences between PDF sets, profiling delicate, simultaneous PDF+SM parameter fits.

 $\alpha_{S,aN3LO}(M_Z^2) = 0.1170 \pm 0.0016$ Consistent with (NNLO) World Average of 0.1180 \pm 0.0009. 2404.02964

• High mass region dominated by large x partons: sizable uncertainties, BSM can be hidden in PDF uncertainties.

2411.05373, 2312.07665. 2406.01779, 2203.05506

Nuclear collinear PDFs: state-of-the-art

Analysis	nCTEQ15HQ (50)	EPPS21 (51)	nNNPDF3.0 (52)	TUJU21 (80)	KSASG20 (
Theoretical input:					
Perturbative order	NLO	NLO	NLO	NNLO	NNLO
Heavy-quark scheme	$SACOT-\chi$	$SACOT-\chi$	FONLL	FONLL	FONLL
Value of $\alpha_s(M_Z)$	0.118	0.118	0.118	0.118	0.118
Charm mass m_c	$1.3{ m GeV}$	$1.3{ m GeV}$	$1.51{ m GeV}$	$1.43{ m GeV}$	$1.3{ m GeV}$
Bottom mass m_b	$4.5{ m GeV}$	$4.75{ m GeV}$	$4.92{ m GeV}$	$4.5{ m GeV}$	$4.75{ m GeV}$
Input scale Q_0	$1.3{ m GeV}$	$1.3{ m GeV}$	$1.0{ m GeV}$	$1.3{ m GeV}$	$1.3{ m GeV}$
Data points	1484	2077	2188	2410	4353
Independent flavors	5	6	6	4	3
Parameterization	Analytic	Analytic	Neural network	Analytic	Analytic
Free parameters	19	24	256	16	18
Error analysis	Hessian	Hessian	Monte Carlo	Hessian	Hessian
Tolerance	$\Delta \chi^2 = 35$	$\Delta \chi^2 = 33$	N/A	$\Delta \chi^2 = 50$	$\Delta \chi^2 = 20$
Proton PDF	\sim CTEQ6.1	CT18A	\sim NNPDF4.0	\sim HERAPDF2.0	CT18
Proton PDF correlations		\checkmark	\checkmark		
Deuteron corrections	$(\checkmark)^{a,b}$	\checkmark^{c}	\checkmark	\checkmark	\checkmark
FIXED-TARGET DATA:					
SLAC/EMC/NMC NC DIS	\checkmark	\checkmark	\checkmark	1	1
$-\operatorname{Cut} \operatorname{on} Q^2$	4 GeV^2	$1.69 \ { m GeV^2}$	$3.5 \ { m GeV^2}$	$3.5 \ { m GeV^2}$	$1.2 \ { m GeV^2}$
$-\operatorname{Cut}$ on W^2	12.25 GeV^2	$3.24 \ { m GeV^2}$	$12.5 \ { m GeV^2}$	$12.0 \ { m GeV^2}$	
JLab NC DIS	$(\checkmark)^a$	\checkmark			\checkmark
CHORUS/CDHSW CC DIS	$(\checkmark/-)^b$	✓ -	√/-	$\sqrt{1}$	$\sqrt{1}$
NuTeV/CCFR 2μ CC DIS	$(\checkmark/\checkmark)^b$		√/-		
pA DY	\checkmark	\checkmark	<i>√</i>		\checkmark
πA DY		\checkmark			
Collider data:					
Z bosons	\checkmark	\checkmark	1	1	
W^{\pm} bosons	1	✓	1	 Image: A second s	
Light hadrons	1	\sqrt{d}			
$-\operatorname{Cut}$ on p_T	3 GeV	3 GeV			
Jets		\checkmark	\checkmark		2311
Prompt photons		-	\checkmark		
Prompt D^0	\checkmark	\checkmark	√ ^e		
$-\operatorname{Cut}$ on p_T	$3~{ m GeV}$	$3 \mathrm{GeV}$	$0~{ m GeV}$		
Quarkonia $(J/\psi, \psi', \Upsilon)$	\checkmark				
• X / / / / /					

^a nCTEQ15HIX (26); ^b nCTEQ15 ν (114); ^c through CT18A; ^d only π^0 in DAu; ^e only forward (y > 0).

- (81) • Methodology: complex error analysis (nCTEQ, EPPS, nNNPDF, TUJU, KSASG).
 - Theory: NLO/NNLO.
 - Data $\mathcal{O}(2000)$ data points, complementarity between data sets.

Nuclear collinear PDFs: state-of-the-art

Nuclear collinear PDFs: LHC data

• EW bosons: W/Z to constrain the glue, larger statistics at the HL-LHC will improve. 2311.00450

- (GPDs, large scale dependence at NLO).

• Dijets constrain the medium and large-x glue, statistics abundant, light ion runs to constrain A-dependence of nPDFs.

2112.12462

Nuclear collinear PDFs: QGP search

• PDFs may mask QGP-like effects in small systems, e.g., pPb or pp.

Collinear PDFs: goals and challenges

- proposed experiments \Rightarrow need of controlled systematics and correlations, inconsistencies?
- need of control precisions, tolerance?
- possibility of higher order calculations.
- **small system problem)**: driven by PDF precision/accuracy improvements \Rightarrow

• **Data:** substantial progress expected from the complementarity of upcoming and

• Methodology: numerous developments, parametrisation \Rightarrow increasing complexity,

• **Theory**: N3LO PDFs coming, and inclusion of theoretical uncertainties, crucial to achieve the required precision \Rightarrow understanding of theoretical uncertainties and

 Standard Model/BSM Parameters (including QGP characterisation and the understanding the assumptions underlying profiling and their impact, separating out 'new' effects from PDFs, complementary data from multiple colliders required.

$$\begin{pmatrix} \frac{d\sigma}{dq_T} \end{pmatrix}_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$$

$$F_{f/P}(x, \mathbf{b}_T; \mu, \zeta) = \sum_j C_{f/j}(x, l_{\mathbf{F}}; \mu_b, \mu_b^2) \otimes f_{j/P}(x, \mu_b)$$

$$\times \exp\left\{K(l_{\mathbf{F}}; \mu_b) \ln \frac{\sqrt{\zeta}}{\mu_b} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta}}{\mu'}\right]\right\}$$

$$\times \exp\left\{K(l_{\mathbf{F}}; \mu_b) \ln \frac{\sqrt{\zeta}}{\mu_b} + g_K(b_T) \ln \frac{\sqrt{\zeta_F}}{\sqrt{\zeta_F, 0}}\right\}$$

$$\bullet \text{ TMD factoris appears in two problems, e.g. and q_T in DY.}$$

$$\bullet \text{ They include perturbative at the set of th$$

- matching onto the collinear region at $b_{\rm T} \ll 1/\Lambda_{\rm QCD}$ factorises as hard (perturbative) and longitudinal (i.e. collinear, non-perturbative).
 - avoid the Landau pole,
 - $f_{\rm NP}$ accounts for the introduction of b_* ,
 - $f_{\rm NP}$ is non-perturbative thus **fit** to data.
- CS and RGE evolution, evolution in μ and ζ , operturbative.

- sation vo scale g., Q
- and non-perturbative pieces.
- They are linked to their collinear counterparts.

Drell-Yan

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

- TWO TMD **PDFs**:
- Lots of data:
 - low-energy: FNAL,
 - mid-energy: RHIC,
 - igh-energy: Tevatron, LHC.

Semi-inclusive DIS

 $P\ell^{\pm} \longrightarrow \ell^{\pm}h X$

- One TMD **PDF** one **FF**:
- many precise data points:
- HERMES at DESY,
- **•** COMPASS at CERN.
- **EIC** will deliver precise data.

pp.

- Also other approaches, e.g., PMB, and relation with small-x physics (CGC).
- Extracted from lattice.
- Large perturbative accuracy computed (and required to describe data).
- Also contain spin information.

 Not yet used for extractions: W production in pp, dijet and heavy quark pair production in DIS, dijets in

	Accuracy	SIDIS	Drell-Yan	N. of points	Flav
DWS 1984, <u>CERN-TH.3987/84</u>	NLL	×	٢	a few	
BLNY 2003, <u>hep-ph/0212159</u>	NLL'-NNLL	×	1	116	
Pavia 2017, <u>1703.10157</u>	NLL	~	2	8059	
SV 2017, <u>1706.01473</u>	N ³ LL	×	✔ (LHC)	309	
SV 2019, <u>1912.06532</u>	N ³ LL(-)	v	✓ (LHC)	1039	
Pavia 2019, <u>1912.07550</u>	N ³ LL	×	✓ (LHC)	353	
MAPTMD22, <u>2206.07598</u>	N ³ LL(-)	v	✔ (LHC)	2031	
ART23, <u>2305.07473</u>	N ⁴ LL ⁽⁻⁾	×	✓ (LHC)	627	
MAPTMD24, <u>2405.13833</u>	N ³ LL	v	✓ (LHC)	2031	
ART25, <u>2503.11201</u>	N ⁴ LL(-)	v	✓ (LHC)	1209	
Neural Network TMDs (MAP) <u>2502.04166</u>	N ³ LL	×	✓ (LHC)	482	

- Large sets of data but much more information to extract than for collinear PDFs.
- Use of different modeling for the nonperturbative pieces and collinear PDFs make TMDs difficult to compare: better the CS kernel (also computed in lattice).

2304.03302

		N^3	LL	
	$N_{\rm dat}$	χ^2_D	χ^2_λ	χ^2_0
1	71	1.10	0.07	1.17
	21	3.56	0.96	4.52
	72	3.54	0.82	4.36
	78	0.38	0.05	0.43
	2	2.76	1.04	3.80
	7	1.12	0.26	1.38
otal	251	1.37	0.28	1.65
V	30	0.13	0.40	0.53
V	39	0.16	0.26	0.42
V	61	0.11	0.08	0.19
	53	0.88	0.20	1.08
	50	0.70	0.22	0.92
et total	233	0.63	0.31	0.94
	484	1.02	0.29	1.31
al	344	0.81	0.24	1.05
otal	1203	0.67	0.27	0.94
	1547	0.70	0.26	0.96
	2031	0.81	0.27	1.08

TMDs: implications

• Extraction of α_s from low transverse momentum DY: huge potential at the LHC.

 Nuclear effects in TMD analyses through nPDFs.

• The partonic profile of hadrons can be extracted dependent on *x*.

 $\langle p | T$ $dx x H(x,\xi)$

Relation with the energymomentum tensor.

B. Pasquini at DIS2025

$$T_{\mu\nu} |p'\rangle = \bar{u}(p') \left[\frac{A(t)}{M_N} \frac{P_\mu P_\nu}{M_N} + J(t) \frac{i(P_\mu \sigma_{\nu\rho} + P_\nu \sigma_{\mu\rho})\Delta^\rho}{2M_N} + \frac{D(t)}{5M_N} \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu}\Delta^2}{5M_N} \right] u(p)$$

Relation with second-moments of GPDs:

$$\xi(t) = A(t) + \frac{4}{5}D(t)\xi^2$$

 $\int dx \, x \, E(x,\xi,t) = 2J(t) - A(t) - \frac{4}{5}D(t)\xi^2$

"Charges" of the EMT Form Factors at t=0 $A^{Q,G}(0)$ nucleon momentum carried by parton

 $J^{Q,G}(0)$ angular momentum of partons

 $D^{Q,G}(0)$ D-term ("stability" of the nucleon)

GPDs: existing data

Experiment	Ref.	Target	Analysis	$W~({\rm GeV})$	x_{Bj}	Q^2
E80 (SLAC)	[101]	р	A_1	2.1 to 2.6	0.2 to 0.33	1.4
E130 (SLAC)	[102]	р	A_1	2.1 to 4.0	0.1 to 0.5	1.0
EMC (CERN)	[103]	p	A_1	5.9 to 15.2	1.5×10^{-2} to 0.47	3.5
SMC (CERN)	[250]	p, d	A_1	7.7 to 16.1	10^{-4} to 0.482	0.0
E142 (SLAC)	[244]	³ He	A_1, A_2	2.7 to 5.5	3.6×10^{-2} to 0.47	1.1
E143 (SLAC)	[245]	p, d	A_1, A_2	1.1 to 6.4	3.1×10^{-2} to 0.75	0.4
E154 (SLAC)	[246, 247]	$^{3}\mathrm{He}$	A_1, A_2	3.5 to 8.4	1.7×10^{-2} to 0.57	1.2
E155/x (SLAC)	[248, 249]	p, d	A_1, A_2	3.5 to 9.0	1.5×10^{-2} to 0.75	1.2
HERMES (DESY)	[253, 254]	p, ³ He	A_1	2.1 to 6.2	2.1×10^{-2} to 0.85	0.8
E94010 (JLab)	[256]	$^{3}\mathrm{He}$	g_1, g_2	1.0 to 2.4	1.9×10^{-2} to 1.0	0.0
EG1a (JLab)	[257]	p, d	A_1	1.0 to 2.1	5.9×10^{-2} to 1.0	0.1
RSS (JLab)	[258, 259]	p, d	A_1, A_2	1.0 to 1.9	0.3 to 1.0	0.8
COMPASS	[251]	p, d	A_1	7.0 to 15.5	4.6×10^{-3} to 0.6	1.1
(CERN) DIS						
COMPASS	[280]	p, d	A_1	5.2 to 19.1	4×10^{-5} to 4×10^{-2}	0.0
(CERN) low- Q^2						
EG1b (JLab)	[260, 261,	p, d	A_1	1.0 to 3.1	2.5×10^{-2} to 1.0	0.0
	262, 263]					
E99-117 (JLab)	[264]	$^{3}\mathrm{He}$	A_1, A_2	2.0 to 2.5	0.33 to 0.60	2.7
E99-107 (JLab)	[265]	$^{3}\mathrm{He}$	g_1, g_2	2.0 to 2.5	0.16 to 0.20	0.5
E01-012 (JLab)	[266, 267]	³ He	g_1, g_2	1.0 to 1.8	0.33 to 1.0	1.2
E97-110 (JLab)	[268]	$^{3}\mathrm{He}$	g_1, g_2	1.0 to 2.6	2.8×10^{-3} to 1.0	0.0
EG4 (JLab)	[269]	p, n	g_1	1.0 to 2.4	7.0×10^{-3} to 1.0	0.0
SANE (JLab)	[271]	р	A_1, A_2	1.4 to 2.8	0.3 to 0.85	2.5
EG1dvcs (JLab)	[270]	р	A_1	1.0 to 3.1	6.9×10^{-2} to 0.63	0.6
E06-014 (JLab)	[272, 273]	$^{3}\mathrm{He}$	g_1, g_2	1.0 to 2.9	0.25 to 1.0	1.9
E06-010/011	[278]	$^{3}\mathrm{He}$	single	2.4 to 2.9	0.16 to 0.35	1.4
(JLab)			spin asy.			
E07-013 (JLab)	[72]	$^{3}\mathrm{He}$	single	1.7 to 2.9	0.16 to 0.65	1.1
			spin asy.			
E08-027 (JLab)	[309]	р	g_1, g_2	1. to 2.1	3.0×10^{-3} to 1.0	0.0

+ polarised RHIC

Impact-parameter distributions: nuclear shape & deformation

• Exclusive VM production in UPCs in AA allows the extraction of nuclear shape, including deformation.

N. Armesto, June 23rd 2025

TMDs and GPDs: goals and challenges

and GPDs, e.g., gluon, flavour dependence.

• Methodology: many developments, several parameterisations, full method of to be included), interplay with collinear PDFs and FFs, extension to nuclei.

• Theory: for TMDs large perturbative accuracy available, crucial to achieve the completion of the missing pieces.

• **Data**: substantial progress expected from upcoming experiments (EIC) \Rightarrow need of large amounts from different observables in order to constrain the numerous TMDs

extraction still lacking for GPDs \Rightarrow increasing complexity (TMD PDFs and FFs have

required precision; for GPDs NNLO DVCS available but not yet full NLO evolution \Rightarrow understanding of theoretical uncertainties, extension to small x and relation with other formalisms, possibility of using non-perturbative information from lattice;

Small x: motivation

- In QCD at high energies, standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail: \rightarrow Large logs, e.g., $\alpha_{s} \ln 1/x \sim 1$: resummation (BFKL, CCFM, ABF, CCSS). \rightarrow High density \Rightarrow linear evolution cannot hold: saturation, either perturbative (CGC) or non-perturbative.
- Non-linear effects driven by density, different from resummation: $X \downarrow$, A \uparrow .

Small x: theory status

- LO calculations (single particle and correlations) do not allow a conclusive comparison with data.
- DIS cross sections.
 - Photon-photon cross sections.
 - Jet-gap-jet observables (Mueller-Navelet).
 - Resummations for some observables: Higgs, heavy quarks.
- NLO calculations in the dense regimen (CGC): JIMWLK/BK at NLL (with collinear resummation)
 - DIS cross sections: impact factors including HQs.
 - \circ Single particle/jet, and DY+jet, in pA: problems with stability; missing dijet and γ +jet. Single hadron, dihadron and dijet in DIS: Sudakov resummation, relation with TMDs at
 - small x and link with CSS/DGLAP.
 - Non-eikonal corrections.
- Relation with TMD factorisation, and search of unified evolution.

NLO calculations in the dilute regime: BFKL at NLL (with coll. resummation)

Target still simply modeled, characterisation from data not yet fully achieved.

Small x: experimental situation

• Experimental observables where small-x effects (resummation, saturation) have been claimed, none of them considered conclusive:

- alternative to DGLAP fits, but several models are able to reproduce data.
- with standard gluon shadowing.
- Two-particle correlations in small systems: theory lacks ingredients and presently contradicts some features of data.
- BFKL and DGLAP.

Lever-arm in Q^2 at small x essential!!!

 \circ DIS cross sections at HERA at small to moderate Q²: resummation has been suggested as

• Two-particle correlations in the forward direction at RHIC: x not really small, and competes

 Exclusive VMs in UPCs: competition with unknown gluon distributions, theoretical caveats. Jet-gap-jet (Tevatron, LHC) and photon-photon (LEP): inconclusive differences between NLL

Lattice: method Since 2013, lattice QCD has provided 1st-principles PDFs, TMDs and GPDs.

- Equivalence between different methods established, and improved renormalisation schemes.
- 2+1(+1) flavors (physical m_{π} for some quantities) achieved.
- Requires matching perturbative coefficients.

• **Challenges**: signal-to-noise ratios, extrapolation to physical m_{π} , suppress systematic uncertainties for large and small x; incorporation of lattice results into global fits (as already done for COMPASS transversity TMD).

x

Q² (GeV²)

Kinematic planes for nuclei

and muons

