Precision QCD at future colliders

ESPP Update 2026 Open Symposium Venice, June 2025

David d'Enterria (CERN) Sven Moch (Hamburg)

23-27 JUNE 2025 Lido di Venezia

Precision QCD at future facilities

Input received: $\mathcal{O}(20)$ future projects

Facility, Experiments	Colliding systems, c.m.s. energy	Timeline	Precision QCD
HL-LHC: ALICE 3, ATLAS & CMS pII, LHCb U2, LHCspin	pp 14 TeV AA 5.5 TeV pA 8.8 TeV	> 2035 (ALICE 3, LHCb U2)	$\begin{array}{l} \alpha_{\rm s}(m_Z^2),\alpha_{\rm s}(Q^2),\\ m_{\rm t},m_{\rm W} \end{array}$
HL-LHC: FPF	LHC collisions, neutrino-nucleon	> 2031	
SPS: NA60+, NA61	pA, AA, 6-17 GeV	> 2030 (NA60+)	
FAIR SIS-100: CBM	pA, AA, 2.5-5 GeV	> 2028	
MUonE	μ(160 GeV)-e	> 2030	g-2 (hadronic)
HIE-ISOLDE upgrades	Radioactive ion beams	> 2029	
KEK: Belle II upg.	ee 10 GeV	> 2035	$lpha_{ m s}(m_{ au}^2)$
STCF	ee 2-7 GeV	> 2033	$lpha_{ m s}(m_{ au}^2)$
EIC	ep, eA 28-140 GeV	> 2036	$\alpha_{\rm s}(m_{\rm Z}^2),\alpha_{\rm s}(Q^2)$
LHeC	ep, eA 1.2 TeV	> 2043	$\alpha_{\rm s}(m_Z^2), \alpha_{\rm s}(Q^2)$
FCC	ee 90-365 GeV pp 85 TeV AA 33.5 TeV pA 53.4 TeV	> 2047 > 2074	$lpha_{ m s}(m_Z^2), lpha_{ m s}(Q^2), \ m_{ m t}, \Gamma_{ m t}, m_{ m W}$
LCF CLIC	ee 0.25-1 TeV ee 0.38-1.5 TeV	> 2050	$ \begin{array}{l} \alpha_{\rm s}(m_{\rm Z}^2), \alpha_{\rm s}(Q^2), \\ m_{\rm t}, \Gamma_{\rm t}, m_{\rm W} \end{array} $
LEP3	ee 91-230 GeV	> 2047	$\alpha_{\rm s}(m_Z^2)$
Muon Collider	μμ 3-10 TeV	> 2050	$\alpha_{\rm s}(m_{\rm Z}^2), \alpha_{\rm s}(Q^2)$

Plus recent community docs: $\alpha_s(2024)$, QCD at Belle-II, latt-QCD,...

Precision benchmarks:

- 1) $\alpha_s(m_z)$ & its Q² dependence
- 2) QCD & precision top mass (m_{top})
- 3) QCD & precision W mass (m_w)
- QCD & Higgs physics
- Theory calculations wish-list:
 - pQCD, latt-QCD,
 - MC parton-showers

The strong coupling α_s

■ Determines strength of the strong interaction among quarks & gluons. ■ <u>Single</u> free parameter of QCD in the m_q = 0 limit. ■ Determined at a ref. scale (Q=m_z), decreases as $\alpha_s \approx \ln(Q^2/\Lambda^2)^{-1}$, $\Lambda \approx 0.2$ GeV

→ Least precisely known of all interaction couplings ! $\Delta \alpha \approx 10^{-10} \ll \Delta G_{F} \approx 10^{-7} \ll \Delta G \approx 10^{-4} \ll \Delta \alpha_{s} \approx 0.8\%$

$\boldsymbol{\alpha}_{s}$ impact beyond QCD

Parametric uncertainty for key Higgs, EWPO, top quark calculations:

Process	σ (pb)	$\delta \alpha_s(\%)$	PD	$\mathbf{F} + \alpha_s(\%)$	S	cale(%)
ggH	49.87	± 3.7	-(6.2 +7.4	-2.6	51 + 0.32
ttH	0.611	± 3.0		\pm 8.9	-9	.3 + 5.9
Partial v	vidth	intr. QC	D	para. m_q	l	para. α_s
$H \rightarrow b\bar{b}$		$\sim 0.2\%$	0	1.4%		0.4%
$H \to c\bar{c}$		$\sim 0.2\%$		4.0%		0.4%
$H \to gg$		$\sim 3\%$		< 0.2%		3.7%

Impacts physics approaching Planck scale: EW vacuum stability, GUT:

α_s determination (today)

Current precision: $\Delta \alpha_s = \pm 0.8\%$

From combination of 7 experimental observables compared to N^{2,3}LO pQCD predictions:

Running coupling probed at the LHC up to $Q \approx 2 \text{ TeV}$

ESPP Venice, June'25

QCD coupling at EIC, Belle-II, STCF, LHeC

α_s extractions at EIC/JLab-22GeV:
 ±1% from inclusive DIS
 ±0.6% from new observables

 (deuteron & spin-dependent SFs):
 ±0.6% from Bjorken SR & pol. PDFs.

 α_s extractions at Belle-II (Upg):
 (50 billion tau pairs in 50 ab⁻¹): Improved tau spectral functions
 «1% (stat.) from hadronic tau decays.

Also possible:

- α_s from R(s) ratio over √s=1–10 GeV α_s from event shapes (EECs) & FFs.
- α_s extraction at STCF:

≪1% (stat.) from hadronic tau decays

α_s extractions at LHeC:
 ±0.2% from inclusive DIS fits
 ±0.15% from incl. DIS + jets

QCD coupling at e⁺e⁻ (LC)

EW boson pseudoobservables known at N³LO in pQCD:

• The W and Z hadronic widths :

$$\Gamma^{
m had}_{
m W,Z}(Q) = \Gamma^{
m Born}_{
m W,Z} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{
m EW} + \delta_{
m mix} + \delta_{
m np}
ight) \; .$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$\sigma_{\rm Z}^{\rm had} = rac{12\pi}{m_{
m Z}} \cdot rac{\Gamma_{
m Z}^{
m e}\Gamma_{
m Z}^{
m had}}{(\Gamma_{
m Z}^{
m tot})^2}$$

Note: Sensitivity to $\alpha_s(m_z)$ via $\mathcal{O}(4\%)$ virtual corrs.

```
arXiv:1512.05194 [hep-ph]
```

- LC (Giga-Z) will reach 0.6% precision on $\alpha_s(m_Z)$ (×4 better than LEP):
 - Assume Z-pole stats.: 10⁹ bosons
 - Other uncertainties (syst., parametric) not considered (but subleading):

 $\alpha_{s}(m_{z}) = 0.1200 \pm 0.0007$

- Also from τ hadronic decays,
 - evt. shapes, jet rates: <1%
- However, LC claim is that α_{ς} should be taken

from latt-QCD (±0.1% precision) instead ESPP Venice, June'25 7/29

S. Moch / D. d'Enterria

QCD coupling at e⁺e⁻ (FCC-ee)

EW boson pseudoobservables known at N³LO in pQCD:

• The W and Z hadronic widths :

$$\Gamma^{
m had}_{
m W,Z}(Q) = \Gamma^{
m Born}_{
m W,Z} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{
m EW} + \delta_{
m mix} + \delta_{
m np}
ight) \; .$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

$$\sigma_{\rm Z}^{\rm had} = rac{12\pi}{m_{\rm Z}} \cdot rac{\Gamma_{\rm Z}^{\rm e}\Gamma_{\rm Z}^{\rm had}}{(\Gamma_{\rm Z}^{
m tot})^2}$$

Note: Sensitivity to $\alpha_s(m_z)$ via $\mathcal{O}(4\%)$ virtual corrs.

```
[arXiv:2005.04545]
```

- FCC-ee will reach 0.1% precision on $\alpha_s(m_z)$ (×20 better than LEP):
 - Huge Z pole stats. ($\times 10^5$ LEP):
 - Exquisite syst./parametric precision:

 $\begin{array}{lll} \Delta {\rm R}_{\rm Z} \ = \ 10^{-3}, & {\rm R}_{\rm Z} \ = \ 20.7500 \pm 0.0010 \\ \Delta \Gamma_{\rm Z}^{\rm tot} \ = \ 0.1 \ {\rm MeV}, \ \Gamma_{\rm Z}^{\rm tot} \ = \ 2495.2 \pm 0.1 \ {\rm MeV} \\ \\ \frac{\Delta \sigma_{\rm Z}^{\rm had} \ = \ 4.0 \ {\rm pb}, & \sigma_{\rm Z}^{\rm had} \ = \ 41 \ 494 \pm 4 \ {\rm pb} \\ \hline \Delta m_{\rm Z} \ = \ 0.1 \ {\rm MeV}, \ m_{\rm Z} \ = \ 91.18760 \pm 0.00001 \ {\rm GeV} \\ \\ \Delta \alpha \ = \ 3 \cdot 10^{-5}, & \Delta \alpha_{\rm had}^{(5)}(m_{\rm Z}) \ = \ 0.0275300 \pm 0.0000009 \\ - \ {\rm TH} \ {\rm uncertainty} \ {\rm needs} \ {\rm to} \ {\rm be} \ {\rm reduced} \ {\rm by} \ \times 4 \end{array}$

from missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms ESPP Venice, June'25 8/29

S. Moch / D. d'Enterria

QCD coupling at e⁺e⁻ (FCC-ee)

EW boson pseudoobservables known at N³LO in pQCD:

• The W and Z hadronic widths :

$$\Gamma^{ ext{had}}_{ ext{W}, ext{Z}}(Q) = \Gamma^{ ext{Born}}_{ ext{W}, ext{Z}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}}
ight) =$$

• The ratio of W, Z hadronic-to-leptonic widths :

$$\mathbf{R}_{\mathbf{W},\mathbf{Z}}(Q) = \frac{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathbf{W},\mathbf{Z}}^{\mathrm{lep}}(Q)} = \mathbf{R}_{\mathbf{W},\mathbf{Z}}^{\mathrm{EW}}\left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

p W padrons

Note: Sensitivity to $\alpha_s(m_z)$ via $\mathcal{O}(4\%)$ virtual corrs.

[arXiv:2005.04545]

- FCC-ee will reach 0.2% precision on $\alpha_s(m_w)$ (×300 better than LEP):
 - Huge W pole stats. ($\times 10^4$ LEP-2).
 - Exquisite syst./parametric precision:

 $\Gamma_W^{\rm tot} = 2088.0 \pm 1.2~{\rm MeV}$

- $R_{\rm W} = 2.08000 \pm 0.00008$
- $m_{\rm W} = 80.3800 \pm 0.0005 \, {\rm GeV}$

 $|V_{cs}| = 0.97359 \pm 0.00010 \leftarrow O(10^{12}) D$ mesons

- TH uncertainty needs to be reduced by $\times 10$ from missing α_s^{5} , α^2 , α^3 , $\alpha\alpha_s^{2}$, $\alpha\alpha_s^{2}$, $\alpha^2\alpha_s$ terms

QCD coupling α_s at FCC-ee,hh & LEP3

• α_s extractions at FCC-ee:

±0.1% from Z pseudoobservables
±0.2% from W hadronic decays
≪1% from tau hadronic decays
≪1% from evt. shapes & jet rates

• α_s extractions at LEP3:

Same physics measurements as FCC-ee modulo smaller samples (×4 less Z) & worse syst. (e.g. beam energy calibration/spread) uncertainties.

±0.2% (stat) from Z pseudoobservables
±0.9% (stat) from W hadronic decays
<1% from tau hadr. decays, evt. shapes & jet rates

Summary: QCD coupling α_{s}

Lattice-QCD:

- Step-scaling & decoupling are state-of-the-art techniques.
- Stat. uncert. \propto (computing power)² reducible by ~1/2 every 10 yrs

1.0

0.6

0.4

0.2

0.0

PDG 2024

FICILIAD

LHec

Δα_s(m²) [%]

0.8 ±0.8%

- pQCD observables needed at higher accuracy: α_s^n
- Syst. uncerts. start playing a role: QED, dynamical charm mass,...

QCD & top quark mass

Top mass is a key SM parameter, strongly intertwined with QCD:

p-p collisions (HL-LHC projections):

- m_{top} (pole) from ttbar+jet x-sections: $\Delta m_{top} \approx \pm 200 \text{ MeV}$
- $m_{top}(MC)$ from boosted tops: $\Delta m_{top} \approx \pm 400 \text{ MeV}$ (theoretical interpretation?)

ATLAS+CMS combined uncertainty on the top-quark pole mass [MeV]							
Scenario	<i>S1</i> at 2 ab^{-1}	S2 at 2 ab ⁻¹	<i>S1</i> at 3 ab^{-1}	$S2$ at 3 ab^{-1}			
$t\bar{t}$ +jet with profiling	400	250	400	200			
$t\bar{t}$ +jet without profiling	1200	600	1200	600			

■ Note: HL-LHC/FCC-hh <u>cannot</u> improve m_{top} beyond $\Lambda_{QCD} \approx 200$ MeV (e⁺e⁻ machine at $\sqrt{s} \approx 345$ GeV needed to measure it at few-MeV level).

ESPP Venice, June'25

S. Moch / D. d'Enterria

 $m_{\rm H} \, [{\rm GeV}]$

QCD & top quark mass in e⁺e⁻: FCC-ee

■ e^+e^- collisions from threshold scan around $\sqrt{s} = 340-345$ GeV (FCC-ee): m_{top} precision: $\Delta m_{top} \approx \pm 7$ MeV (exp.), thanks to very good \sqrt{s} control:

■ QCD theory for $\sigma(e^+e^- \rightarrow ttbar)$ vs. \sqrt{s} at threshold: $\Delta m_{top} \approx \pm 35$ MeV from N³LO scale uncerts.

PNRQCD predictions known to N³LO (also including EW+non-resonant effects @ NNLO) $R \sim v \sum_{k} \left(\frac{\alpha_s}{v}\right)^k \cdot \left\{ \underbrace{1 \text{ (LO)}}_{s,v}; \underbrace{\alpha_s, v \text{ (NLO)}}_{s,v}; \underbrace{\alpha_s^2, \alpha_s v, v^2 \text{ (NNLO)}}_{s,v}; \underbrace{\alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 \text{ (N3LO)}}_{s,v}; \ldots \right\}$

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser '15]

ESPP Venice, June'25

QCD & top quark mass in e⁺e⁻: LC

e⁺e⁻ colls. from threshold scan over √s = 340–350 GeV (CLIC rescaled): m_{top} precision: Δm_{top} ≈ ±10 MeV (exp.)

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser '15]

ESPP Venice, June'25

Summary: QCD & top quark mass

Forecast m_{top} precision at future facilities:

No high-precision m_{top} possible without parallel QCD theory progress!

QCD & W boson mass: LH(e)C vs. e⁺e⁻

- LHC: m_W from p_T^ℓ, m_T^ℓ (low PU) distribs: Best current LHC precision: Δm_W ≈ ±10 MeV QCD uncertainties (PDFs & low p_T^W): Δm_W ≈ ±5 MeV Expected HL-LHC: Δm_W ≈±4 MeV (QCD: ±3 MeV)
- e^+e^- collisions (FCC-ee, LEP3): m_w from $\sigma_{ww}(\sqrt{s})$ scan in $\ell \nu$ decays

Expected precision: FCC-ee: $\Delta m_W \approx \pm 0.4$ MeV (exp) LEP3: $\Delta m_W \approx \pm 1.2$ MeV (exp)

But, significant $\sigma_{WW}(\sqrt{s})$ theory uncertainties:

 $\Delta m_w \approx 3-5$ MeV from missing higher EW & EW \otimes QCD corrections in EFT:

 HL-LHC+LHeC: Reduced PDFs+α_s uncerts: Expected precision: Δm_w ≈ ±3MeV (QCD: ±1 MeV)

ESPP Venice, June'25

16/29

QCD & W boson mass: LH(e)C vs. e⁺e⁻

e⁺e⁻ collisions (FCC-ee, LEP3, LC): m_w from √s-constrained kinematic fit of m_{inv}(jj+ℓν), m_{inv}(jj+jj) at all √s runs

Expected precision: FCC-ee: $\Delta m_W \approx \pm 0.25$ MeV (exp) LC: $\Delta m_W \approx \pm 0.9$ MeV (exp) LEP3: $\Delta m_W \approx \pm 0.9$ MeV (exp)

Significant hadronization uncertainties:

- − In boosted $m_{inv}(jj+\ell\nu)$ at LC: $\Delta m_W \approx \pm 0.9$ MeV (much less hadroniz. uncert. in e⁺e⁻ → WW at rest)
- In all $m_{inv}(jj+jj)$ analyses: $\Delta m_W \approx \pm 1$ MeV (FCC-ee, LC, LEP3) due to Color Reconnection:

 HL-LHC+LHeC: Reduced PDFs+α_s uncerts: Expected precision: Δm_w ≈ ±3MeV (QCD: ±1 MeV)

 M_W shift due to CR effect, modelled using the SKI scenario

S. Moch / D. d'Enterria

Colour reconnection from m_w in e⁺e⁻

- Colour reconnection among partons is source of uncertainty in m_w in multijet final states (also m_{top} inv. mass, aGC extractions):
- **CR** "string drag" impacts $e^+e^- \rightarrow WW(4j)$ final state

(also $e^+e^- \rightarrow ttbar$, $e^+e^- \rightarrow ZZ(4j)$, $H \rightarrow 4j$,...):

- Shifted masses & angular correlations (CP studies).
- − Combined LEP $e^+e^- \rightarrow WW(4j)$ data best described with 49% CR, 2.2σ away from no-CR.
- Exploit 10⁸ W stats at FCC-ee to measure

m_w leptonically & hadronically and constrain CR:

 M_W shift due to CR effect, modelled using the SKI scenario S. Moch / D. d'Enterria

18/29

Summary: QCD & W boson mass

Forecast m_w precision

at future facilities:

$\bullet \sigma_{WW}(\sqrt{s})$ scan in $\ell \nu$ decays

FCC-ee: $\Delta m_W \approx \pm 0.4$ MeV LEP3: $\Delta m_W \approx \pm 1.2$ MeV Theory uncerts. (incl. mixed EW \otimes QCD): $\Delta m_W = 3-5$ MeV

Constrained m_{inv} fit: FCC-ee: $\Delta m_w \approx \pm 0.25$ MeV LC: $\Delta m_w \approx \pm 0.9$ MeV ± 1 MeV LEP3: $\Delta m_w \approx \pm 0.9$ MeV

QCD (hadronization) uncerts. important for LC (boosted W) & m_{inv}(jj+jj) color reconnect.

HL-LHC+LHeC:

 $\Delta m_w \approx \pm 3 \text{ MeV}$ (±1 MeV from PDFs)

Different high-precision m_w extractions require parallel QCD progress.
 m_w measurements help us understand non-pQCD: Color reconnection

ESPP Venice, June'25

Higgs boson & QCD

Do the lightest quarks (u,d,s) acquire their masses through their Higgs (Yukawa) couplings?

Higgs boson & QCD at e⁺e⁻ colliders

Higgs boson & QCD at e⁺e⁻ colliders

ESPP Venice, June'25

22/29

S. Moch / D. d'Enterria

Higgs → gg decay & BSM

• $H \rightarrow gg$ partial width known today theoretically at N⁴LO (approx) accuracy

Uncertainties today: $\Delta \mathcal{B}(H \rightarrow gg) \approx \pm 3\%$ from higher-order corrs. $\Delta \mathcal{B}(H \rightarrow gg) \approx \pm 4\%$ from $\Delta \alpha_s(m_z) \approx 1\%$

Much larger than $\Delta \kappa_g \approx \pm 0.7\%$ (FCC-ee)

Percent deviations on Higgs-gluon (loop-induced) coupling in BSM:

Table 5: Deviations from the Standard Model predictions for the Higgs boson couplings in %

	Model	$b\overline{b}$	$c\overline{c}$	gg	WW	au au	ZZ	$\gamma\gamma$	$\mu\mu$	
1	MSSM [40]	+4.8	-0.8	-0.8	-0.2	+0.4	-0.5	+0.1	+0.3	-
2	Type II 2HD [42]	+10.1	-0.2	-0.2	0.0	+9.8	0.0	+0.1	+9.8	
3	Type X 2HD [42]	-0.2	-0.2	-0.2	0.0	+7.8	0.0	0.0	+7.8	
4	Type Y 2HD [42]	+10.1	-0.2	-0.2	0.0	-0.2	0.0	0.1	-0.2	[\/: 4700.00040]
5	Composite Higgs [44]	-6.4	-6.4	-6.4	-2.1	-6.4	-2.1	-2.1	-6.4	[arXiv:1708.08912]
6	Little Higgs w. T-parity [45]	0.0	0.0	-6.1	-2.5	0.0	-2.5	-1.5	0.0	
7	Little Higgs w. T-parity [46]	-7.8	-4.6	-3.5	-1.5	-7.8	-1.5	-1.0	-7.8	
8	Higgs-Radion [47]	-1.5	- 1.5	+10.	-1.5	-1.5	-1.5	-1.0	-1.5	
9	Higgs Singlet [48]	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	-3.5	

TH work needed to reduce intrinsic uncertainties: Today $\mathcal{O}(3\%) \rightarrow \mathcal{O}(<1\%)$

ESPP Venice, June'25

S. Moch / D. d'Enterria

But gluon jets are badly known today

MC LL parton showers differ vastly on gluon jet substructure properties:

ESPP Venice, June'25

Strange Yukawa via $H \rightarrow ss$

■ FCC-ee will produce $\mathcal{O}(400)$ H → ssbar decays. Can one measure y_s? ■ ParticleNet jet tagger exploiting hadron PID (via dE/dx, ToF, RICH):

Tagger exploits directly full list of jet constituents (ReconstructedParticles):

[$\mathcal{O}(50)$ properties/particle] \times [~50-100 particles/jet]

~ $\mathcal{O}(1000)$ inputs/jet

Analysis e⁺e⁻ → HZ, H → qq with N=2j exclusive jet algorithm: Backgds: WW/ZZ/Z, qqH, HWW, HZZ Combined jj (Hbb, Hcc, Hss, Hbb) fit yields: H → ss with O(80%) uncertainty

ESPP Venice, June'25

S. Moch / D. d'Enterria

Strange Yukawa via $H \rightarrow ss$

Does the $H \rightarrow gg(ss)$ "Dalitz" decay jeopardize the $H \rightarrow ss$ measurement?

Need also NⁿLL parton showers (matched to NⁿLO) and accurate & precise s, g hadronization:

High-precision hadron data (Tera-Z, B-factories?) needed to reliably distinguish leading s,u,d,g fragmentation hadrons

ESPP Venice, June'25

Summary: QCD for Higgs physics

- Precision needed to fully exploit the (B)SM program at Higgs factories requires exquisite control of pQCD & non-pQCD: $\mathcal{B}(H \rightarrow had)=80\%$
- 3 key examples:
 - (1) Studying BSM in Higgs-gluon coupling within $\pm 0.7\%$ (exp) requires $\alpha_s(m_z)$ within $\pm 0.1\%$:
 - (2) Identifying gluon jets requires significantly improved gluon fragmentation in parton shower (NNLL) MCs:

High-stats data samples to be exploited: $e^+e^- \rightarrow Z \rightarrow qq(g), e^+e^- \rightarrow H(gg)Z$

- (3) Observing strange-Yukawa requires significantly improved quark & gluon hadronization:
- Dedicated studies of huge/clean hadronic Z,W→jj samples are key to H→jj physics.

H

Theory calculations "wish list"

Summary table for precision-QCD wish-list (pQCD, lattice, MC PS):

	Observable	Missing higher-order & power-suppressed corrections
]	Hadronic Z width	$\mathcal{O}(\alpha_s^5), \mathcal{O}(\alpha^3), \mathcal{O}(\alpha_s^2\alpha^3), \mathcal{O}(\alpha_s^2\alpha^2)$
$\alpha_{s}(m_{z})$	Hadronic W width	$\mathscr{O}(\alpha_s^5), \mathscr{O}(\alpha^2), \mathscr{O}(\alpha^3), \mathscr{O}(\alpha_s\alpha^2), \mathscr{O}(\alpha_s\alpha^3), \mathscr{O}(\alpha_s^2\alpha^2)$
in e⁺e⁻ ⊐	Hadronic $ au$ width	$\mathscr{O}(\boldsymbol{\alpha}_s^5)$
]	Hadronic event shapes (Z, W, H decays)	N ³ LO differential, N ^{3,4} LL resummation, power corrections
	Inclusive jet rates	3-jet cross sections at $N^{3}LO$, 4-jets at $N^{2}LO$, 5-jets at NLO
$\alpha_{s}(m_{z})$	Lattice QCD results	$\mathscr{O}(\alpha_s^6)$ β -function; $\mathscr{O}(\alpha_s^5)$ heavy quark decoupling; $\mathscr{O}(\alpha_s^4)$ static potential
in latt.	$(\alpha_s \text{ extractions; quark masses } m_c, m_b)$	$\mathscr{O}(\alpha_s^3)$ lattice perturbation theory matching (lattice coupling to $\alpha_s^{\overline{MS}}$ etc.)
mw.mtop	$\sigma(e^+e^- \rightarrow W^+W^-)$ vs. \sqrt{s}	EW N ² LO: $\mathcal{O}(\alpha^2)$, Mixed EW-QCD: $\mathcal{O}(\alpha_s \alpha^2)$, $\mathcal{O}(\alpha_s^2 \alpha)$
in e ⁺ e ⁻	$\sigma(e^+e^- \rightarrow t\bar{t})$ vs. \sqrt{s}	NRQCD: $\mathscr{O}(\alpha_s^5)$, Non-resonant: $\mathscr{O}(\alpha_s^5)$,
		$O(\alpha_s^3)$ differential; QED: $\mathscr{O}(\alpha^3)$ at NNLL
	$H \rightarrow b \bar{b}$ width	N ⁴ LO (massive b-quark); N ⁴ LO differential (massless b-quark)
in Higgs	$H \rightarrow gg$ width	N ⁵ LO (heavy-top limit), N ⁴ LO (massive top)
ete e-n		N ⁴ LO differential, N ³ LO differential (massive top)
c c , c p , -	MC simulations for $e^+e^- \rightarrow X$ processes	$N^{2,3}LO$ matched to $N^{2,3}LL$ PS.
p-p = 3		Permille control of non-perturbative QCD effects (hadronization, CR,)
$\alpha_{s}(m_{z})$	ep \rightarrow hadrons (PDF and $\alpha_{\rm s}$ determination)	$N^{3,4}$ LO evolution equations and inclusive cross sections
in DIS	$ep \rightarrow jets (\alpha_s determination)$	N ³ LO cross sections

Future Higgs/EW/top factories (in particular FCC-ee) impose very strong requirements on theory developments to match expected exp. precision.

Summary: Precision QCD at future facilities

Precision needed to fully exploit the (B)SM program at Higgs factories requires very precise measurements of pQCD & non-pQCD physics:

29/29

Backup slides

α_s determination (future)

Expected improvements:

"The strong coupling constant: state of the art and the decade ahead", JPG 51 (2024) 090501

	Relative $\alpha_S(m_Z^2)$ uncertainty				
Method	Current Near (long-term) future				
	theory & exp. uncertainties sources	theory & experimental progress			
(1) Lattice	0.7%	$pprox 0.3\% \; (0.1\%)$			
(1) Lattice	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observables			
	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO, active charm (QED effects)			
		Higher renorm. scale via step-scaling to more observ.			
(2) τ decays	1.6%	< 1.%			
(2) / decays	N ³ LO CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT–FOPT diffs.			
	Limited τ spectral data	Improved $ au$ spectral functions at Belle II			
(2) \overline{OO} bound states	3.3%	pprox 1.5%			
(5) && bound states	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound states			
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits			
(4) DIS & PDF fits	1.7%	pprox 1% (0.2%)			
	$N^{2,(3)}LO$ PDF (SF) fits	$\mathrm{N^{3}LO}$ fits. Add new SF fits: $F_{2}^{p,d},g_{i}$ (EIC)			
	Span of PDF-based results	Better corr. matrices. More PDF data (LHeC/FCC-eh) $$			
(5) a^+a^- jets lr out shapes	2.6%	$\approx 1.5\% \; (< 1\%)$			
(5) e e jets & evt snapes	$NNLO+N^{(1,2,3)}LL$ truncation	Add N ^{2,3} LO+N ³ LL, power corrections			
	Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, grooming			
	Limited datasets $\mathbf{w}/$ old detectors	New improved data at B factories (FCC-ee)			
(6) Electroweak fits	2.3%	(≈ 0.1%)			
(b) Electroweak hts	$N^{3}LO$ truncation	N ⁴ LO, reduced param. uncerts. ($m_{\rm W,Z}$, α , CKM)			
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FCC-ee)			
(7) Hadron colliders	2.4%	pprox 1.5%			
(1) Hadron conders	$\ensuremath{\operatorname{NNLO}}(+\ensuremath{\operatorname{NNLL}})$ truncation, PDF uncerts.	$N^{3}LO+NNLL$ (for color-singlets), improved PDFs			
	Limited data sets ($t\bar{t}$, W, Z, e-p jets)	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j ratios,			
World average	0.8%	pprox 0.4% (0.1%)			

Precision at HL-LHC time: ±0.4%. At LHeC (incl. DIS+jets): ±0.15%
 Precision after FCC-ee: ±0.1% (Z,W → hadrons pseudoobserv.)
 Running coupling probed up to Q ≈ 40 TeV (FCC-hh)
 ESPP Venice, June'25

QCD coupling α_{s} at FCC-ee/FCC-hh/MuColl

 α_{s} measurements at FCC-ee: ±0.1% from Z pseudoobservables ±0.2% from W hadronic decays ≪1% from tau hadronic decays ≪1% from evt. shapes & jet rates

 $\boldsymbol{\alpha}_{s}$ measurements at MuColl: Running up to Q≈10TeV (EECs) Measurements of neutrino SFs at a far-forward detector.

Flavor-violating Higgs decays

33/29

ESPP Venice, June'25

S. Moch / D. d'Enterria

Higgs decays widths & QCD coupling

H \rightarrow gg partial width known today theoretically at N⁴LO (approx) accuracy

Partial width	intr. QCD	intr. electroweak	total	para. m_q	para. α_s
$H ightarrow b ar{b}$	$\sim 0.2\%$	< 0.3%	< 0.4%	1.4%	0.4%
$H \to c \bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%	4.0%	0.4%
$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$	< 0.2%	3.7%

Higgs decays widths & QCD coupling

• $H \rightarrow gg$ partial width known today theoretically at N⁴LO (approx) accuracy

FCC-ee will reduce $\alpha_s(m_z)$ uncertainties to required $\kappa_g \pm 0.7\%$ exp. precision

decay	projected intr.	para. m_q	para. α_s	prec. on g_{HXX}^2
$H \rightarrow b \bar{b}$	$\sim 0.2\%$	0.6%	< 0.1%	$\sim 0.8\%$
$H \to c \bar c$	$\sim 0.2\%$	$\sim 1\%$	< 0.1%	$\sim 1.4\%$
H ightarrow gg	$\sim 1\%$		0.5%~(0.3%)	$\sim 1.6\%$

TH work needed to reduce intrinsic uncertainties: Today $O(3\%) \rightarrow O(<1\%)$

Precision QCD benchmarks & input docs

3 precision-QCD benchmark points defined:

- 1) $\alpha_s(m_z)$ and its Q² dependence.
- 2) Strong interaction impact on precision measurements of m_{top}
- 3) Strong interaction impact on precision measurements of m_w
- 36 ESPPU input docs. associated to precision-QCD received: $\mathcal{O}(20)$ with concrete precision-QCD information:

Low \sqrt{s} : MuonE (1), PBC (1), STCF (1) DIS machines: DIS-EPPSU (1), LHeC (4) H/EW/t factories: ECFA HET Fact. (1), FCC-ee (4), LEP3 (2), LC (1) Energy frontier: FCC-hh (2), Muon Collider (2) Theory: FORM (1), QIT (1)

Plus results from recent community reports & experts consultation:

Belle-II: https://inspirehep.net/literature/2063309, (see A.Vossen, next) EIC: https://inspirehep.net/literature/1851258, (see Win Lin, next) Lattice QCD:https://inspirehep.net/literature/2053387 (+upcoming feedback)

ECFA HET e+e- factories

HET e+e- factories:

- At FCC-ee: alpha_s(m_Z) with ±0.1% uncertainty, alpha_s(m_W) with ±0.2%.

- QCD impact on m_W measurement:

NNLO corrections to the W-pair production and W-boson decay processes as well as leading corrections beyond NNLO can be calculated within the EFT approach, and a theory-induced systematic uncertainty below 0.5 MeV on mW from an energy scan near threshold seems feasible. For intermediate and high energies, a full NNLO calculation for W-pair production in the double-pole approximation would be most desirable; a task that should be achievable in the next decade, anticipating further progress at the frontier of loop calculations. Newly developed colour reconnection and hadronisation models should also be considered.

- QCD impact on m_top measurement:

From a detailed assessment of systematic uncertainties, the final precision is expected to be dominated by the scale uncertainties in the N3LO NRQCD prediction, at the level of 20 MeV and 14 MeV at 68% CL for m_t and Gamma_t, respectively, underlining the need for theoretical advancements to fully profit from the physics potential of future e+e- colliders. The contribution to this uncertainty from alpha_s is 2 MeV, given the assumed 10^-4 precision.

FCC-ee, FCC-hh

FCC-ee:

- QCD impact on precision Higgs physics.

- QCD impact on m_W measurement:

A theoretical uncertainty of 0.1% in the total cross section for e+e- -> W + W- threshold line-shape translates into a delta $mW\sim1.5$ MeV uncertainty. Current state-of-the-art predictions reach delta $m_W \sim 3$ -5 MeV precision, whereas achieving an uncertainty delta $m_W < 0.5$ MeV will require the calculation of the NNLO EW corrections (currently out of reach), as well as the inclusion of mixed EW-QCD [126] effects and a refined treatment of QED initial-state radiation [127]. Direct m W extraction via the reconstructed invariant mass of W boson decay products needs dedicated studies for a precise assessment. Among the leading theoretical systematics, nonperturbative color-reconnection (CR) effects in the hadronic decays of both W bosons are expected to play a role. The precise m_W extracted from leptonic decays as an input, can be used in lepton + jets and fully hadronic WW decays at FCC-ee will benefit the development and tuning of such CR models.

- QCD impact on m_top measurement:

The final foreseen experimental precision on m top and Gamma_top will be of about 7 and 13 MeV, respectively, dominated by statistical uncertainties (Table 3), whereas missing higher orders in the theoretical predictions amount to 35 (25) MeV on m_top (Gamma_top)

Progress needed include the computation of N4LO corrections in the non-relativistic EFT framework, as well as the description of QED effects at NNLL both in the collinear limit (e.g., ISR [152,153]) and in the soft limit (as discussed in Ref. [154]). Plus N^3LO calculation for the nonresonant channels. The theoretical description of differential distributions, which are central to controlling precisely the effect of experimental cuts., is less accurate than that of the inclusive quantities, and reaches either NLO or NNLO accuracy only for specific observables [155, 156]